Please use this identifier to cite or link to this item: http://monografias.ufrn.br/handle/123456789/8582
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBernardino, Adriano Thiago Lopes-
dc.contributor.authorSilva, Luiz Fernando de Oliveira-
dc.date.accessioned2019-03-07T16:15:07Z-
dc.date.available2019-03-07T16:15:07Z-
dc.date.issued2018-12-12-
dc.identifier2015033182pt_BR
dc.identifier.citationSILVA, Luiz Fernando de Oliveira. Um estudo sobre Espaços de Sequências. 2018. 70 f. TCC (Graduação) - Curso de Matemática, Departamento de Ciências Exatas e Aplicadas, Universidade Federal do Rio Grande do Norte, Caicó, 2018.pt_BR
dc.identifier.urihttp://monografias.ufrn.br/handle/123456789/8582-
dc.languagept_BRpt_BR
dc.publisherUniversidade Federal do Rio Grande do Nortept_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectSequências.pt_BR
dc.subjectSequences.pt_BR
dc.subjectEspaço Vetorial.pt_BR
dc.subjectVector Space.pt_BR
dc.subjectEspaço Vetorial Normado.pt_BR
dc.subjectNormed Vector Space.pt_BR
dc.subjectEspaço de Banach.pt_BR
dc.subjectBanach Space.pt_BR
dc.subjectEspaços de Sequências.pt_BR
dc.subjectSequence Spaces.pt_BR
dc.titleUm estudo sobre Espaços de Sequênciaspt_BR
dc.typebachelorThesispt_BR
dc.contributor.referees1Bernardino, Adriano Thiago Lopes-
dc.contributor.referees2Batista, Alex de Moura-
dc.description.resumoEste trabalho tem como objetivo uma introdução aos espaços de sequências. Constitui-se de uma pesquisa bibliográfica, tendo como principais aportes teóricos Lima (2013), Kreyszig (1978) e Machado (2012). Neste estudo é feita uma breve abordagem sobre os espaços de sequências c_0, c_00 e l_infinito. Tomando-os inicialmente apenas como conjuntos, verificamos que de fato são espaços vetoriais normados. Concluímos que os espaços c_0 e l_infinito das sequências nulas e das sequências limitadas, respectivamente, são espaços de Banach e que o espaço c_00, das sequências eventualmente nulas é um espaço vetorial normado que não é de Banach. Apresentamos também alguns resultados importantes de Análise Real com enfoque em sequências de números reais, de modo que o leitor possa obter base teórica para a compreensão dos resultados apresentados.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentMatemáticapt_BR
dc.publisher.initialsUFRNpt_BR
dc.contributor.referees3Filho, Luis Gonzaga Vieira-
Appears in Collections:CERES - Matemática

Files in This Item:
File Description SizeFormat 
UmestudosobreEspaçodeSequencias_Silva_2018.pdfTrabalho de Conclusão de Curso da licenciatura em Matemática do Centro de Ensino Superior do Seridó, Campus Caicó, da Universidade Federal do Rio Grande do Norte704.16 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons