Please use this identifier to cite or link to this item: http://monografias.ufrn.br/handle/123456789/5433
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNunes, Marcus Alexandre-
dc.contributor.authorSilva Neto, Waldemar Alves da-
dc.date.accessioned2017-12-18T20:33:38Z-
dc.date.available2017-12-18T20:33:38Z-
dc.date.issued2017-12-07-
dc.identifier2013017241pr_BR
dc.identifier.citationNETO, Waldemar Alves da Silva. Aplicação de um modelo de regressão linear aos dados de balneabilidade das praias de Natal entre 2011 e 2015. 2017. 66 f. Monografia (Graduação) - Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal, 2017.pr_BR
dc.identifier.urihttp://monografias.ufrn.br/jspui/handle/123456789/5433-
dc.description.abstractIn this work, we used weekly contamination data (number of \emph{Escherichia coli} bacteria) for the period from 2011 to 2015 to describe the water quality conditions of 15 points of the Natal coastline. Graphs, tables, and data summarization were used both at local level (each point) and at general level (all beaches together). Points NA-13 (Redinha/Potengi River) and NA-15 (Redinha Beach) obtained the worst contamination rates. The result of NA-13 should be related to the fact that the Potengi River is the main rainwater collector in the city. The point NA-15 is directly impacted by the sea currents that push the waters from the mouth of the Potengi River to this area, and the uncontrolled urban sprawl in the north zone of Natal, as well as the high concentration of bathers and trades on the beach. On the other hand, point NA-06 (Via Costeira) obtained the best results regarding the levels of contamination in the monitored period. This is probably due to the peculiar conditions of the region. It is an area of open sea, with low urban density (only hotels), few accesses to the beach and no commercial structure of bar and restaurant, being therefore an area of reduced anthropic impact. After the descriptive analysis, we adjusted multiple linear regression and simple linear regression models using as predictive variables, respectively, daily rainfall levels in the 6 days prior to each collection and the accumulated rainfall in those 6 days. The response variable was the number of bacteria counted in the weekly water samples by the most probable number method (MPN). The models were not satisfactory, nor did they fit the assumptions necessary for their acceptance and use for predicting the amount of bacteria in the water. We conclude that for the development of statistical tools for balneability prediction, it is necessary to use more explanatory variables, as well as more robust methods, which treat data inflated with zeros, since rainfall in the capital assumes zero values with high frequency due to the Tropical Climate of the city.pr_BR
dc.languagept_BRpr_BR
dc.publisherUniversidade Federal do Rio Grande do Nortepr_BR
dc.rightsopenAccesspr_BR
dc.subjectNatalpr_BR
dc.subjectBalneabilidadepr_BR
dc.subjectEscherichia colipr_BR
dc.subjectAnálise de Regressãopr_BR
dc.subjectAnálise Descritivapr_BR
dc.titleAplicação de um modelo de regressão linear aos dados de balneabilidade das praias de Natal entre 2011 e 2015pr_BR
dc.typebachelorThesispr_BR
dc.contributor.referees1Nunes, Marcus Alexandre-
dc.contributor.referees2Pinho, André Luís de Santos-
dc.description.resumoNeste trabalho, utilizamos dados semanais de contaminação (número de bactérias do tipo \emph{Escherichia coli}) referentes ao período de 2011 a 2015 para descrever as condições de balneabilidade de 15 pontos do litoral de Natal. Para tal, foram utilizados gráficos, tabelas e sumarização de dados, tanto a nível local (cada ponto) quanto a nível geral (todas as praias em conjunto). Os pontos NA-13 (Redinha/Rio Potengi) e NA-15 (Redinha Praia) obtiveram os piores índices de contaminação. O resultado do ponto NA-13 deverá estar atrelado ao fato do Rio Potengi ser o principal captador de águas pluviais da cidade. Já o ponto NA-15 sofre impacto direto das correntes marítimas que empurram as águas oriundas da foz do Rio Potengi para essa área, e do adensamento urbano sem regulamentação na zona norte, além da alta concentração de banhistas e comércios na praia. No sentido contrário, o ponto NA-06 (Via Costeira) obteve os melhores resultados quanto aos níveis de contaminação no período monitorado. Isto provavelmente deve-se às condições peculiares do local. É uma área de mar aberto, com baixo adensamento urbano (somente hotéis), poucos acessos à praia e nenhuma estrutura comercial de bar e restaurante, sendo, portanto, uma área de reduzida presença antrópica. Posteriormente a análise descritiva, ajustamos modelos de regressão linear múltipla e regressão linear simples utilizando como variáveis preditoras, respectivamente, os níveis de precipitação diário nos seis dias anteriores a cada coleta e o volume de chuva acumulada nesses seis dias. A variável resposta foi o número de bactérias contabilizadas nas amostras de água semanais pelo método do número mais provável (NMP). Os modelos não foram satisfatórios, nem se adequaram aos pressupostos necessários para aceitação e utilização dos mesmos para realização de previsões de quantidade de bactérias na água. Concluímos então que para o desenvolvimento de ferramentas estatísticas de previsão de balneabilidade será necessário a utilização de mais variáveis explicativas, além de métodos mais robustsos e que tratem dados com número elevado de zeros, uma vez que a pluviometria na capital assume valores nulos com alta frequência devido ao seu Clima Tropical.pr_BR
dc.publisher.countryBrasilpr_BR
dc.publisher.departmentEstatísitcapr_BR
dc.publisher.initialsUFRNpr_BR
dc.contributor.referees3Silva, Damião Nóbrega da-
Appears in Collections:Estatística

Files in This Item:
File Description SizeFormat 
RegressaoLinear_SilvaNeto_2017.pdfMonografia4.55 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons