Please use this identifier to cite or link to this item: http://monografias.ufrn.br/handle/123456789/4322
Title: Experimentos com Aprendizado por Reforço em Cenário de Combate de StarCraft
Other Titles: Experiments with Reinforcement Learning in a StarCraft Combat Scenario
Authors: Santos, Victor Henrique dos
Keywords: Estratégia de Combate;Aprendizado por Reforço;StarCraft
Issue Date: Jun-2017
Publisher: Universidade Federal do Rio Grande do Norte
Citation: SANTOS, V. H. Experimentos com aprendizado por reforço em cenário de combatede starcraft. Monografia (Bacharel em Ciência da Computação), UFRN (UniversidadeFederal do Rio Grande do Norte), Natal, Brazil, 2017.
Portuguese Abstract: Com o intuito de melhorar a inteligência artificial (IA) dos jogos de estratégia em tempo real (RTS), a comunidade internacional de IA tem incentivado pesquisas no contexto de diversas problemáticas encontradas nos ambientes deste gênero de jogos. Isto se deve ao fato que os jogos de RTS oferecem aos pesquisadores um excelente laboratório devido à complexidade e dinamicidade da simulação de campos de batalha realistas, controláveis e observáveis. Estes ambientes, tais como o do jogo StarCraft, que é um benchmark da comunidade internacional de IA, requerem soluções bastante complexas de tomada de decisão envolvendo problemáticas tais como a gestão de recursos, o tratamento da incerteza, a colaboração e coordenação dos personagens, o aprendizado e modelagem de adversários, entre outros, de forma que um exército alcance o seu objetivo da melhor maneira. Neste aspecto, o presente trabalho se propõe a analisar e aperfeiçoar a aplicação de técnicas de aprendizado por reforço em um cenário simplificado de combate de StarCraft, tendo como base um trabalho publicado na IEEE Conference on Computational Intelligence and Games, através da experimentação de diversos parâmetros de aprendizado e exploração, assim como um incremento no modelo original de representação do ambiente utilizado no trabalho publicado. Os resultados obtidos através dos experimentos realizados apresentaram uma melhoria significativa na eficiência e na qualidade do aprendizado que refletiu em um acréscimo no número médio de vitórias da estratégia aprendida no ambiente simulado.
Abstract: In order to improve the artificial intelligence (AI) of real-time strategy (RTS) games, the AI international community has encouraged researches the context of several problems on the RTS games environment. This is due to the fact the RTS games offer to researchers an excellent labs due to the complexity and dynamicity of the simulation of realistic, controlled and observable battle fields. Those environment, such as the game StarCraft, witch is a benchmark of the AI international community, require complex decision make solutions. Witch involves problems like resource management, uncertainty reasoning, collaboration and unities coordination, opponent learning and modelling, etc, in order to reach their goal in the best way. For those reasons, this work propose to analyze and improve the application of reinforcement learning techniques in a simplified StarCraft combat scenario. In order to do this, this work is based in a work published on IEEE Conference on Computational Intelligence and Games, through the experimentation of various reinforcement learning parameters as well as modification of the original environment representation model used the published work. The results obtained from the experiments show a significant improvement on the learning efficiency and quality. This ends up reflecting in a augmentation of the victories average on the simulated environment.
URI: http://monografias.ufrn.br/jspui/handle/123456789/4322
Other Identifiers: 2011024677
Appears in Collections:Ciência da Computação

Files in This Item:
File Description SizeFormat 
CombateStartCraft_Santos_2017.pdfMonografia3.38 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons