Use este identificador para citar ou linkar para este item: http://monografias.ufrn.br/handle/123456789/3826
Título: Predição de aprovação em um curso em tecnologia da Informação no Instituto Metrópole Digital da UFRN: uma aplicação da análise de regressão logística
Autor(es): Carelli, Diego Silva Campos
Palavras-chave: Analise de resíduos;Curva ROC;Diagnósticos;Educação a distância
Data do documento: 10-Fev-2017
Editor: Universidade Federal do Rio Grande do Norte
Referência: CARELLI, Diego Silva Campos. Predição de aprovação em um curso em tecnologia da informação no Instituto Metrópole Digital da UFRN: uma aplicação da análise de regressão logística. 2017. 104 f. Monografia (Graduação) - Curso de Estatística, Universidade Federal do Rio Grande do Norte, Natal, 2017.
Resumo: Um indicador comum de rendimento escolar em processos de aprendizagem educacional é a taxa de alunos aprovados. Relacionar esta taxa com características dos alunos pode fornecer um meio para compreender o processo de aprovação e apontar caminhos para melhorar o rendimento dos alunos. Neste trabalho, a análise de regressão logística é aplicada para modelar a probabilidade de aprovação de 1.270 estudantes em um curso técnico do Instituto Metrópole Digital da Universidade Federal do Rio Grande do Norte. O logito da probabilidade de aprovação é estimado por uma combinação linear envolvendo efeitos principais das variáveis sexo, idade, número de faltas no curso, argumento no exame de admissão na instituição, duração do curso de ensino médio e instrução do pai do aluno, além das interações entre sexo e idade, entre sexo e número de faltas e entre idade e número de faltas. A adequabilidade do modelo é confirmada pela estatística de Hosmer-Lemeshow, análise dos resíduos e análises de medidas de diagnósticos. Também, o modelo apresenta especifidade de 84,3%, sensibilidade de 94,2%, taxa global de classificação correta de 89,2% e área sob a curva ROC igual a 0,956, sugerindo uma elevada capacidade preditiva. Em linhas gerais, mantendo-se fixos os efeitos das outras variáveis, observa-se que a chance de aprovação estimada pelo modelo: (i) cresce com o aumento da idade entre os alunos do sexo masculino; (ii) diminui com o incremento do número de faltas, principalmente entre estudantes do sexo feminino; (iii) cresce com o aumento do argumento de entrada na instituição; (iv) é menor entre aqueles que não cursam o ensino médio ou que cursam o ensino médio mas não concluíram ainda do que a chance de aprovação dos alunos que levaram três anos ou menos para concluir o ensino médio; (v) é menor entre aqueles cuja instrução do pai é ensino superior completo, desconhece ou o pai é falecido do que a chance entre os alunos cujos pais são analfabetos ou possuem ensino fundamental incompleto.
Abstract: A common school performance indicator in educational learning processes is the rate of approved students. Relating this rate to student's characteristics can provide a means to understand the approval process and to improve student's achievement. In this work, logistic regression analysis is applied to model the probability of approval of 1.270 students in a technical course of the Digital Metropolis Institute of the Federal University of Rio Grande do Norte. The logit of the probability of approval is estimated by a linear combination involving the main effects of the variables gender, age, number of course absences, argument in the institution admission exam, duration of the high school course, instruction of the student's father, as well as the interactions sex and age, sex and number of absences and age and number of absences. The suitability of the model fit is confirmed by the Hosmer-Lemeshow statistics, examination of the model residuals and analysis of diagnostic measures. Also, the model has specificity of 84.3%, sensitivity of 94.2%, overall rate of correct classifications of 89.2% and area under the ROC curve equal to 0.956, suggesting therefore the model has high predictive ability. In short, keeping the effects of the other variables fixed, it is observed that the chance of approval estimated by the model: (i) increases with the increasing of age among male students; (ii) decreases with the increase in the number of absences, especially among female students; (iii) increases with the increase of the argument of entrance in the institution; (iv) is lower among those who do not attend high school or attend high school but have not graduated yet than the chance of approval of students who have taken three years or less to complete high school; (v) is lower among those whose father's education is complete high school, do not know or the father is deceased than the chance among students whose parents are illiterate or have incomplete elementary education.
URI: http://monografias.ufrn.br/jspui/handle/123456789/3826
Outros identificadores: 2010051556
Aparece nas coleções:Estatística

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
RegressaoLogistica_Carelli_2017.pdfMonografia1,15 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.