Please use this identifier to cite or link to this item:
Title: Precursores LaNiO3/La2NiO4 suportados em MCM-41 para obtenção de hidrogênio a partir da reforma a seco do metano.
Authors: Agostinho, Lenilton Vidal
Keywords: Hidrogênio.;MCM-41.;Perovskita.;Reforma a Seco do Metano.;Methane Dry Reforming.;Hydrogen.
Issue Date: 16-Dec-2016
Publisher: Universidade Federal do Rio Grande do Norte
Citation: ABBAS, H.F.; WAN DAUD, W.M.A. Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, v. 35, p. 1160–1190, 2010. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2015. Disponível em: <> Acesso em: 29 de agosto de 2016. ALIPOUR, Z.; REZAEI, M.; MESHKANI, F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. Journal of Industrial and Engineering Chemistry, v. 20, p. 2858–2863, 2014. ALOTAIBI, R.; ALENAZEY, F.; ALOTAIBI, F.; ALOTAIBI, F.; WEI, N.; AL-FATESH, A.; FAKEESHA, A. Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Applied Petrochemical Research, v. 5, p. 329–337, 2015. ARMOR, J.N. The multiple roles for catalysis in the production of H2. Applied Catalysis A: General, v. 176, p. 159–176, 1999. ASHIK, U.P.M.; WAN DAUD, W.M.A.; ABBAS, H.F.; Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review. Renewable and Sustainable Energy Reviews, v. 44, p. 221–256, 2015. BARROS, B.S.; KULESZA, J.; MELO, D.M.A.; KIENNEMAN, A. Nickel-Based catalyst precursor prepared via microwave-induced combustion method: themodynamics of sythesis and performance in dry reforming of CH4. Material Research, v.18, p. 732-739, 2015. BATIOT-DUPEYRAT, C.; SIERRA GALLEGO G.A.; MONDRAGON, F.; BARRAULT, J.; TATIBOUTËT, J.-M. CO2 reforming of methane over LaNiO3 as precursor material. Catalysis Today, v. 107–108, p. 474–480, 2005. BAUDOUIN, D.; RODEMERCK, U.; KRUMEICH, F.; MALLMANN, A.; SZETO, K.C.; MÉNARD, H.; VEYRE, L.; CANDY, J.-P.; WEBB, P.B.; THIEULEUX, C.; COPÉRET, C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. Journal of Catalysis, v. 297, p. 27–34, 2013. DECOURT, B.; LAJOIE, B.; DEBARRE, R.; SOUPA, O. Hydrogen-Based Energy Conversion, More than Storage: System Flexibility, SBC Energy Institute, 2014, Paris. Disponível em: <> Acesso em: 29 de agosto de 2016. BRASIL, Lei 9.478 de 06 de agosto de 1997. CHAMBRIARD, M. Perspectivas para o Gás Natural, Agência Nacional de Petróleo (ANP), 17 de outubro de 2012. Disponível em: <> Acesso em: 18 de agosto de 2016. CIESIELCZUK, T.; POLUSZYNSKA, J.; ROSIK-DULEWSKA, C.; SPOREK, M.; LENKIEWICZ, M. Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological Engineering, V. 95, p. 485–491, 2016. CIOLA, R. Fundamentos da Catálise. Universidade de São Paulo: Editora da Universidade de São Paulo: São Paulo, 1981. COSTA, C.C.; MELO, D.M.A.; MARTINELLI, A.E.; FONTES, M.S.B.; MELO, M.A.F.; BARROS, J.M.F. Adsorption of CO2 in MCM-41 synthesized using mixed surfactants. Applied Mechanics and Materials, v. 830, p. 11-18, 2016. DIAS, J.A.C.; ASSAF, J.M. Influence of calcium content in Ni/CaO/-Al2O3 catalysts for CO2-reforming of methane. Catalysis Today, v. 85, p. 59–68, 2003. DUTTA, S. A review on production, storage of hydrogen and its utilization as an energy resource Journal of Industrial and Engineering Chemistry, v. 20, p. 1148–1156, 2014. EWBANK, J.L.; KOBARIK, L.; DIALLO, F.Z.; SIEVERS, C. Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Applied Catalysis A: General, v. 494, p. 57–67, 2015. FAN, M.-S.; ABDULLAH, A.Z.; BHATIA, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem, v.1, p. 192–208, 2009. FARAMAWY, S.; ZAKI, T.; SAKR, A.A.-E. Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, v. 34, p. 34–54, 2016. GALLEGO, G.S.; MONDRAGÓN, F.; TATIBOUËT, J.-M.; BARRAULT, J.; BATIOT-DUPEYRAT, C. Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor—Characterization of carbon deposition. Catalysis Today, v. 133–135, p. 200–209, 2008. GHONIEM, A.F. Needs, resources and climate change: Clean and efficient conversion technologies. Progress in Energy and Combustion Science, v. 37, p. 15-51, 2011. GIL, M.V.; FERMOSO, J.; RUBIERA, F.; CHEN, D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catalysis Today, v. 242, p. 19–34, 2015. GRANDELL, L.; LEHTILÄ, A.; KIVINEN, M.; KOLJONEN, T.; KIHLMAN, S.; LAURI, L.S. Role of critical metals in the future markets of clean energy technologies. Renewable Energy, v. 95, p. 53-62, 2016. GUO, J.; LOU, H.; ZHAO, H.; CHAI, D.; ZHENG, X. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, v. 273, p. 75–82, 2004. HE, N.; LU, Z.; YUAN, C.; HONG, J.; YANG, C.; BAO, S.; XU, Q. Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous molecular materials. Supramolecular Science, v. 5, p. 553-558, 1998. HÖHLEIN, B.; MENZER, R.; RANGE, J. High temperature methanation in the long-distance nuclear energy transport system. Applied Catalysis, v. 1, p. 125-139, 1981. HUANG, F.; WANG, R.; YANG, C.; DRISS, H.; CHU, W.; ZHANG, H. Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. Journal of Energy Chemistry, v. 25, p. 709–719, 2016. HÜBERT, T.; BOON-BRETT, L.; BLACK, G.; BANACH, U. Hydrogen sensors – A review. Sensors and Actuators B, v. 157, p. 329–352, 2011. Inorganic Crystal Structure Database. Disponível em: <> Acesso em: 01 de setembro de 2016 International Energy Agency - IEA. Hydrogen and FuelCells. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016. International Energy Agency - IEA. Wourld Energy Outlook 2015. OECD Publishing, 2015, Paris. Acesso dia 13 de setembro de 2016. International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2015. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016. International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2013. IEA, 2013, Paris. Acesso em 13 de setembro de 2016. KOTHARI, R.; TYAGI, V.V.; PATHAK, A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, v. 14, p. 3164-3167, 2010. KRESGE, C.T.; LEONOWICZ, M.E.; ROTH, W.J.; VARTULI, J.C.; BECK, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, v. 359, p. 710-712, 1992. LEVALLEY, T.L.; RICHARD, A.R.; FAN, M. The progress in water gas shift and steam reforming hydrogen production technologies e A review. International Journal of Hydrogen Energy, v. 39, p. 16983-17000, 2014. LIMA, S.M.; SILVA, A.M.; COSTA, L.O.O.; ASSAF, J.M.; JACOBS, G.; DAVIS, B.H.; MATTOS, L.V.; NORONHA, F.B. Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Applied Catalysis A: General, v. 377, p. 181–190, 2010 LIU, B.S.; AU, C.T. Carbon deposition and catalyst stability over La2NiO4/-Al2O3 during CO2 reforming of methane to syngas. Applied Catalysis A: General, v. 244, p. 181–195, 2003. LUO, Y; LU, G.Z.; GUO, Y.L.; WANG, Y.S. Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: Synthesis, characterization and catalysis. Catalysis Communications, v. 3, p. 129–134, 2002. MAKSHINA, E.V.; SIROTIN, S.V.; BERG, M.W.E.; KLEMENTIEV, K.V.; YUSHCHENKO, V.V.; MAZO, G.N.; GRÜNERT, W.; ROMANOVSKY, B.V. Characterization and catalytic properties of nanosized cobaltate particles prepared by in situ synthesis inside mesoporous molecular sieves. Applied Catalysis A: General, v. 312, p. 59–66, 2006. MEDEIROS, R.L.B.A.; MACEDO, H.P.; MELO, V.R.M.; OLIVEIRA, A.A.S.; BARROS, J.M.F.; MELO, M.A.F.; MELO, D.M.A. Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. International Journal of Hydrogen Energy, v. 41, p. 14047–14057, 2016. MEYNEN, V.; COOL, P.; VANSANT, E.F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, v. 12, p. 170–223, 2009. NGUYEN, S.V.; SZABO, V.; TRONG-ON, D.; KALIAGUINE, S.; Mesoporous silica supported LaCoO3 perovskites as catalysts for methane oxidation. Microporous and Mesoporous Materials, v. 54, p. 51–61, 2002. NIKOO, M.K.; AMIN, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology, v. 92, p. 678–691, 2011. NOWOTNY, J.; VEZIROGLU, T.N. Impact of hydrogen on the environment. International Journal of Hydrogen Energy, v. 36, p. 13218-13224, 2011. OMOREGBE, O.; DANH, H.T.; ABIDIN, S.Z.; SETIABUDI, H.D.; ABDULLAH, B.; VU, K.B.; VO, D.V.N. Influence of Lanthanide Promoters on Ni/SBA-15 Catalysts for Syngas Production by Methane Dry Reforming. Procedia Engineering, v. 148, p. 1388–1395, 2016. PEÑA, M.A.; GÓMEZ, J.P.; FIERRO, J.L.G. New Catalytic Routes for Syngas and Hydrogen Production. Applied Catalysis A, v. 144, p. 7–57, 1996. PENNER, S.S. Steps toward the hydrogen economy. Energy, v. 31, p. 33–43, 2006. PEREÑIGUEZ, R.; CRUZ, G.M.V.; CABALLERO, A. HOLGADO, J.P. LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase. Applied Catalysis B: Environmental, v. 123-124, p.324-332. 2012. RATNASAMY, P.; KUMAR, R. Ferrisilicate analogs of zeolites. Catalysis Today, v. 9, 10, p. 329-416, 1991. RATNASAMY, P.; KUMAR, R. Transition metal-silicate analogs of zeolites. Catalysis Letters, v. 22, p. 227-237, 1993. RAUPACH, M.R.; MARLAND, G.; CIAIS, P.; LE QUÉRÉ, C.; CANADELL, J.G.; KLEPPER, G.; FIELD, C.B. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Siences of the United States of America – PNAS, v.104, n. 24, p. 10288–10293, 2007. Disponível em: <> Acesso em: 08 de agosto de 2016. ROSS, J.R.H.; KEULEN, A.N.J.; HEGARTY, M.E.S.; SESHAN, K.; The catalytic conversion of natural gas to useful products. Catalysis Today, v. 30, p. 193-199, 1996. SARKAR, B.; GOYAK, R.; PENDEM, C.; SASAKI, T.; BAL, R. Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of methane. Journal of Molecular Catalysis A: Chemical, v. 424, p. 17-26, 2016. SCHOLZ, W.H. Processes for industrial production of hydrogen and associated environmental effects. Gas Separation & Purification, v. 7, p. 131-139, 1993. SONG, X.; DONG, X.; YIN, S.; WANG, M.; LI, M.; WANG, HA. Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Applied Catalysis A: General, v. 526, p. 132–138, 2016. SUTTHIUMPORN, K.; MANEERUNG, T.; KATHIRASER, Y.; KAWI, S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, v. 37, p. 11195-11207, 2012. TSANG, S.C.; CLARIDGE, J.B.; GREEN, M.L.H. Recent advances in the conversion of methane to synthesis gas. Catalysis Today, v. 23, p. 3–15, 1995. VALDERRAMA, G.; GOLDWASSER, M.R.; NAVARRO, C.U.; TATIBOUËT, J.M.; BARRAULT, J.; BATIOT-DUPEYRAT, C.; MARTÍNEZ, F. Dry reforming of methane over Ni perovskite type oxides. Catalysis Today, v. 107-108, p. 785-791, 2005. VALDERRAMA, G.; KIENNEMANN, A.; GOLDWASSER, M.R. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. International Journal of Hydrogen Energy, v. 39, p. 4917-4925, 2014. WANG, N.; YU, X.; WANG, Y.; CHU, W.; LIU, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catalysis Today, v. 212, p. 98–107, 2013. WANG, Z.; CAO, X.M.; ZHU, J.; HU, P. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. Journal of Catalysis, v. 311, p. 469-480, 2014. YI, N.; CAO, Y.; SU, Y.; DAI, W.-L.; HE, H.-Y.; FAN, K.-N. Nanocrystalline LaCoO3 perovskite particles confined in SBA-15 silica as a new efficient catalyst for hydrocarbon oxidation. Journal of Catalysis, v. 230, p. 249–253, 2005. ZHANG, Q.; LI, Z.; WANG, G.; LI, H. Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China. Applied Energy, v. 162, p. 1385-1398, 2016.
Portuguese Abstract: A geração de energia frente ao crescimento da demanda energética é um desafio para manutenção do bem-estar social, principalmente se levarmos em conta a forte presença do petróleo na matriz energética. Soma-se a isso, a ligação entre petróleo e mudanças climáticas devido às emissões de dióxido de carbono (CO2). Na tentativa de driblar tais problemas, o hidrogênio (H2) se destaca como fonte de energia devido à sua alta conversão e eficiência. Com a conscientização ambiental, a Reforma a Seco do Metano, RSM, ganha destaque devido à utilização de CO2 na geração de gás de síntese (H2 e CO). Catalisadores de níquel são largamente estudados devido ao baixo custo e estabilidade. Como catalisador, o níquel, Ni, pode ser obtido a partir da perovskita LaNiO3 em função de sua boa estabilidade. Tal composto tem uma baixa área superficial, limitando sua utilização. A utilização de suportes com alta área superficial, como o MCM-41, aumenta a área superficial do catalisador. Um dos problemas em suportar perovskitas em MCM-41 é a alta temperatura requerida na formação das mesmas, o que desestabilizaria a estrutura do MCM-41. O presente trabalho objetiva unir propriedades do MCM-41 e da perovskita, preparando LaNiO3 e La2NiO4 in situ por impregnação úmida como precursores de Ni0/La2O3 suportados em MCM-41. A temperatura de calcinação (700ºC) foi escolhida por ser intermediária à de formação das perovskitas e destruição da desestabilização do MCM-41. Os resultados de DRX mostram uma mistura de NiO, La2O3, LaNiO3 e La2NiO4, enquanto que os pós-RTP mostram Ni0 e La2O3. Os resultados de RSM realizados em reator de leito fixo mostram taxas de conversão de CH4 e CO2 em torno de 88,8 e 88,1%, respectivamente, para 10 horas de reação, além de razão H2/CO > 1, indicando bons resultados para a produção de hidrogênio.
Abstract: The energy generation in the face of growing energy demand is a challenge to maintain the social welfare, especially if we take into account the strong presence of oil in the energy matrix. Added to this, there is the link between oil and climate changes due to carbon dioxide (CO2) emissions. In an attempt to cease such problems, hydrogen (H2) stands out as an energy source due to its high conversion and efficiency. With the increase of environmental awareness, the Methane Dry Reforming, MDR, is highlighted due to the use of CO2 in synthesis gas generation (H2 and CO). Nickel catalysts are widely studied because of its low cost and stability. As a catalyst, nickel can be obtained from the perovskite LaNiO3 because of perovskite’s good stability. Perovskite compounds have low surface area, limiting their use. The use of supports with high surface area, such as MCM-41, increases the surface area of the catalyst. One of the problems in supporting perovskites on MCM-41 is the high temperature required to form them, which would destabilize the MCM-41 structure. The present work aims to put together MCM-41 and perovskite proprieties preparing LaNiO3 and La2NiO4 in situ by wet impregnation as precursors of Ni0/La2O3 supported on MCM-41. The calcination temperature (700°C) was chosen because it was intermediate to that of perovskite formation and destabilization of the MCM-41 structure. The XRD results show a mixture of NiO, La2O3, LaNiO3 and La2NiO4, whereas the post-TPR XRD show Ni0 and La2O3. MDR results in fixed-bed reactor show CH4 and CO2 conversion rates around 88.8 and 88.1%, respectively, for a ten-hour analysis, as well as H2/CO> 1 ratio, indicating good results for hydrogen generation.
Other Identifiers: 2011024354
Appears in Collections:Química do Petróleo

Files in This Item:
File Description SizeFormat 
PrecursoresLaNiO3-La2NiO4_AGOSTINHO_2016.pdf1,46 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.