Please use this identifier to cite or link to this item: http://monografias.ufrn.br/handle/123456789/10716
Title: Produção de fitas de tricálcio fosfato e hidroxiapatita via tape casting
Authors: Lopes, Arielle Joice Fonseca
Keywords: Fosfatos de cálcio;TCP;Regeneração;Membranas;PVA;Calcium phosphates;Regeneration;Membranes
Issue Date: 16-Jun-2020
Publisher: Universidade Federal do Rio Grande do Norte
Citation: LOPES, Arielle Joice Fonseca. Produção de fitas de fosfato tricálcio e hidroxiapatita via tape. 2020. 51f. Trabalho de Conclusão de Curso (Graduação em Engenharia Química) - Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, 2020.
Portuguese Abstract: A busca por novos materiais que melhoram a regeneração óssea vem crescendo cada vez mais, o que tem possibilitado o desenvolvimento de dispositivos com o mesmo padrão de cristalinidade do osso, permitindo a substituição, restauração e reestruturação das funções teciduais perdidas ao longo do tempo por traumas. Os fosfatos de cálcio devido à grande semelhança química e biológica com o osso humano tem sido amplamente investigado para melhoria da regeneração óssea, pois apresentam baixa resistência mecânica e são excelentes promotores de neoformação óssea. Alguns íons de carga semelhante ao cálcio podem ser incorporados aos fosfatos de cálcio para formarem associações com as apatitas biológicas. Estudos apontam o uso do manganês como melhorador da biocompatibilidade de hidroxiapatitas e fosfatos tricálcio, além de ativar propriedades magnéticas, uma vez que o elemento é segregado sob a forma de nanodomínios magnéticos. O objetivo deste trabalho foi o desenvolvimento de membranas cerâmicas de Hidroxiapatita e Tricálcio Fosfato através da técnica de Tape Casting a fim de ser utilizado como curativo em regeneração de tecido ósseo. Para o desenvolvimento destas membranas foram produzidas suspensões cerâmicas à base de polímeros para otimizar as propriedades mecânicas. Dentre esses polímeros, foi utilizado o poli (álcool vinílico) - PVA, o qual é um material sintético de boa biocompatibilidade e baixo custo. Devido a degradabilidade rápida apresentada pelo PVA, foi necessário a adição de um agente reticulante na suspensão cerâmica, uma vez que a interferência negativa na osteogênese celular reduz o tempo de interação entre o material e o osso. As suspensões obtidas foram caracterizadas através de ensaios físico-químicos, tais como análises de reologia, e as fitas submetidas a análises de difração de Raios X (DRX), grau intumescimento, ensaios morfológicos, tais como microscopia eletrônica de varredura (MEV), e ensaios in vitro, tais como bioatividade e citotoxicidade. Avaliou-se o potencial das fitas obtidas como curativo ósseo, para regeneração tecidual. Os resultados demonstraram que as suspensões produzidas apresentaram comportamento pseudoplástico, necessário para a técnica via Tape Casting. As análises de DRX permitiram observar as fases β- TCP e Hidroxiapatita. O grau de intumescimento e as análises térmicas validaram a presença do ácido cítrico como agente reticulante, pois se mostraram resistentes à água e ao aumento da temperatura do meio. As análises de biocompatibilidade confirmaram a bioatividade da membrana e não tóxico, o que é adequado ao uso em tecido ósseo.
Abstract: The search for new materials that improve bone regeneration has been growing more and more, which has enabled the development of devices with the same crystallinity pattern of bone, allowing the replacement, restoration and restructuring of lost tissue functions. Calcium phosphates due to the great chemical and biological similarity with bone tissues have been extensively investigated to improve bone regeneration, as they have low mechanical resistance and excellent promoters of new bone formation. Some ions with a calcium-like charge can be incorporated into calcium phosphates to form associations with biological apatites. Studies point to the use of manganese as an enhancer of the biocompatibility of hydroxyapatites and tricalcium phosphates, in addition to activating magnetic properties, since the element is secreted in the form of magnetic nanodomains. The objective of this work was the development of hydroxyapatite and tricalcium phosphate ceramic membranes using the Tape Casting technique to be used as a bone dressing in bone tissue regeneration. For the development of these membranes, ceramic suspensions based on polymers were produced to optimize the mechanical properties. Among these polymers, poly (vinyl alcohol) - PVA was used, which is a synthetic material with good biocompatibility. Due to the rapid degradability presented by PVA, it was necessary to add a crosslinking agent to the ceramic suspension, since the negative interference in cell osteogenesis reduces the interaction time between the material and the bone. The suspensions obtained were characterized by physical-chemical tests, such as rheology analysis, and the tapes subjected to thermal analysis (ATG and ATD), X-ray diffraction (XRD), degree of swelling, morphological tests, such as electron microscopy of scanning (SEM), and in vitro assays, such as bioactivity and cytotoxicity. The potential of the tapes obtained as a bone dressing for tissue regeneration was evaluated. The results showed that the suspensions produced showed a pseudoplastic behavior, necessary for the technique via Tape Casting. The XRD analyzes allowed to observe the phases β-TCP and Hydroxyapatite. The degree of swelling and thermal analysis validated the presence of citric acid as a crosslinking agent, as they were resistant to water and to the increase in the temperature of the medium. Biocompatibility analyzes confirmed the low bioactivity of the membrane and are non-toxic, which is suitable for use in bone tissue.
URI: http://monografias.ufrn.br/handle/123456789/10716
Other Identifiers: 20150100546
Appears in Collections:Engenharia Química

Files in This Item:
File Description SizeFormat 
ProducaodeFitas_Lopes_2020Monografia1.05 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons