Please use this identifier to cite or link to this item: http://monografias.ufrn.br/handle/123456789/10525
Title: Um estudo sobre os espaços Lp
Authors: Barbosa, Anderson
Keywords: Sigma-álgebra .;Espaço de funções;Medida;Espaço de Banach;Funções mensuráveis;Sigma-algebra;Banach space;Measure;Function space;Measurable functions
Issue Date: 12-Dec-2019
Publisher: Universidade Federal do Rio Grande do Norte
Citation: BARBOSA, Anderson Felipe de Souza. Um estudo sobre os espaços Lp. 2019. 104 f. TCC (Graduação) - Curso de Matemática, Departameto de Ciências Exatas e Aplicadas, Universidade Federal do Rio Grande do Norte, Caicó, 2019. Cap. 4.
Portuguese Abstract: Este trabalho tem como objetivo estudar os espaços das funções integráveis a Lebesgue, verificando suas características e propriedades. Um dos resultados mais importantes desse trabalho é o Teorema de Riesz-Fischer que nos mostra que o espaço da funções p integráveis a Lebesgue é um espaço de Banach. Para a construção desses espaços foi feito o estudo sobre a integral de Lebesgue, que nada mais é que uma generalização da integral de Riemann. Foi feito um estudo sobre álgebra de conjuntos e assim definido o que são as álgebras e sigma-álgebras, e também verificado qual a maior sigma-álgebra de subconjuntos dos reais que satisfaz as condições de uma medida. Será feita também neste trabalho a apresentação dos principais resultados em relação ao estudo da medida e integração tais como suas principais características. Foram abordados alguns resultados referentes a construção de medidas tal como um problema clássico da teoria da medida, medidas exteriores, conjuntos mensuráveis e funções mensuráveis. Também apresenta-se os importantes teoremas de convergência como o Teorema da Convergência Monótona, o Lema de Fatou, o Teorema da Convergência Dominada de Lebesgue e o Teorema da Convergência Limitada.
Abstract: This work aims to study the spaces of Lebesgue integrable functions, verifying their characteristics and properties. One of the most important results of this work is the Riesz-Fischer Theorem which shows us that the p function space integrable to Lebesgue is a Banach space. For the construction of these spaces was made the study of the Lebesgue integral, which is nothing more than a generalization of the Riemann integral. A study on set algebra was made and thus defined what are algebras and sigma-algebras, and also verified which is the largest sigma-algebra of subsets of real that meets the conditions of a measure. This work will also present the main results regarding the study of measurement and integration as its main characteristics. Some results regarding the construction of measures such as a classic problem of measurement theory, exterior measures, measurable sets and measurable functions were addressed. Important convergence theorems are also presented, such as the Monotonous Convergence Theorem, Fatou's Lemma, the Lebesgue Dominated Convergence Theorem, and the Limited Convergence Theorem.
URI: http://monografias.ufrn.br/handle/123456789/10525
Other Identifiers: 2016037408
Appears in Collections:CERES - Matemática

Files in This Item:
File Description SizeFormat 
UmEstudoSobreOsEspaçosLp_Barbosa_2019616.17 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons