Please use this identifier to cite or link to this item: http://monografias.ufrn.br/handle/123456789/10301
Title: Pacote GeoPoisson: Implementação e Aplicações
Other Titles: GeoPoisson Package: Creation and Applications.
Authors: Carneiro, Thiago Mota
Keywords: Geoestatística;Poisson Não Homogêneo;MCMC;Geostatistics;Non-Homogeneous Poisson
Issue Date: 2019
Publisher: Universidade Federal do Rio Grande do Norte
Citation: CARNEIRO, Thiago Mota. Pacote GeoPoisson: implementação e aplicações. 2019. 44f. Trabalho de Conclusão de Curso (Graduação em Estatística) - Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal, 2019.
Portuguese Abstract: As aplicações de modelos geoestatísticos têm crescido rapidamente nas últimas décadas. Modelos geoestatísticos de contagem via Processo de Poisson têm se mostrado muito versáteis em ciências ambientais na previsão de eventos anômalos (excesso de chuvas, concentrações letais de CO no ar). No entanto, o modelo de contagem via Processo de Homogêneo é limitada para aplicações, restringindo as situações em que se adequa aos fenômenos. Para tal fim, foi desenvolvido o modelo geoestatístico de contagem via Processo de Poisson não homogêneo. Este estudo se propõe a implementar em um pacote na linguagem R a metodologia de estimação do modelo acima. O uso das funções do pacote é exemplificado em dados obtidos de 29 estações de medições pluviométricas da ANA (Agência Nacional de Águas) para os estados do Piauí e Maranhão, durante 30 anos (1980 - 2010), e pretende criar intervalos de credibilidade, por meio de MCMC - Simulação de Monte Carlo via Cadeia de Markov (amostragem de Gibbs com passos de Metropolis-Hastings), para os parâmetros do modelo. Além disso, o pacote retorna um mapa de interpolação espacial de chuvas anômalas esperadas durante o mesmo período em regiões vizinhas não observadas.
Abstract: The application of geostatistical models have been growing rapidly in the last decades. Geostatistical models for counting via Poisson process have been a versatile tool for environ- mental sciences in predicting anomalous events (excessive rains, lethal CO concentration). However, the counting via homogeneous Poisson process model is applicable to a very narrow scope of phenomena. For thus a geostatistical model was developed for counting via non homogeneous Poisson process. We propose a new package in R software with a set of functions to estimate the model above. The usage of the package is exemplified with data obtained from 29 measuring stations in Piaui and Maranhao - Brazil, from 1980 to 2010 published by ANA (Agencia Nacional de Aguas - Brazilian National Water Agency). The main function obtains credibility intervals to the parameters of the model in a Bayesian approach through MCMC, specifically the Metropolis-Hastings algorithm within Gibbs sampling. In addition, we made a function which returns an interpolation map of anomalous events in neighboring unobserved regions.
URI: http://monografias.ufrn.br/handle/123456789/10301
Other Identifiers: 20170001474
Appears in Collections:Estatística

Files in This Item:
File Description SizeFormat 
00TCC Final(2).pdf1.97 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons