RELATÓRIO DE ESTÁGIO SUPERVISIONADO

UNIDADE DE TRATAMENTO E PROCESSAMENTO DE FLUIDOS (UTPF) – PETROBRAS UO-RNCE

Aluna: Jéssica Tamiris da Silva Araújo
Orientadora: Profª. Dra. Magna Angélica dos Santos Bezerra Sousa
Supervisor de Estágio: Eng. Ricardo José Lins Neves

NATAL/RN. 1 de dezembro de 2016.
AGRADECIMENTOS

Agradeço, em primeiro lugar, a Deus pelo dom da vida e pela coragem e determinação que me foram dados para prosseguir até o final dessa jornada que é a graduação. Em seguida, agradeço aos meus pais e meus irmãos pela torcida e apoio diário.

Agradeço também aos amigos que fiz no decorrer do curso e que sempre me ajudam, torcem e fazem desta jornada mais leve, dados os obstáculos que aparecem.

Os meus agradecimentos se estendem aos professores do Departamento de Engenharia Química pelos conhecimentos repassados, em especial à professora Magna pela confiança e pela ajuda, sou muito grata.

Por fim, e não menos importante, agradeço ao pessoal da Petrobras, particularmente, os da UTPF, em especial OPF, gerência da qual fiz parte durante um ano e não só cumpri um estágio, fize amigos. A vocês, a minha eterna gratidão.
LISTA DE SIGLAS

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSW</td>
<td>Basic Sediment and Water</td>
</tr>
<tr>
<td>CIEE</td>
<td>Centro de Integração Empresa Escola</td>
</tr>
<tr>
<td>DPCM</td>
<td>Departamento de Construção e Montagem</td>
</tr>
<tr>
<td>DRX</td>
<td>Difração de raios-x</td>
</tr>
<tr>
<td>EIA</td>
<td>Estação de Injeção de Agua</td>
</tr>
<tr>
<td>ETA</td>
<td>Estação de Tratamento de Água</td>
</tr>
<tr>
<td>ETE</td>
<td>Estação de Tratamento de Efluentes</td>
</tr>
<tr>
<td>ETO</td>
<td>Estação de Tratamento de Óleo</td>
</tr>
<tr>
<td>FRX</td>
<td>Fluorescência de raios-x</td>
</tr>
<tr>
<td>IQUAI</td>
<td>Índice de Qualidade da Água de Injeção</td>
</tr>
<tr>
<td>OPF</td>
<td>Operação de Fluidos</td>
</tr>
<tr>
<td>PI</td>
<td>Plant Information</td>
</tr>
<tr>
<td>PRGC</td>
<td>Programação e Controle</td>
</tr>
<tr>
<td>SEG</td>
<td>Segurança</td>
</tr>
<tr>
<td>UPGN</td>
<td>Unidade de Processamento de Gás Natural</td>
</tr>
<tr>
<td>UTPF</td>
<td>Unidade de Tratamento e Processamento de Fluidos</td>
</tr>
</tbody>
</table>
ÍNDICE DE FIGURAS

Figura 1 - Vista panorâmica do Pólo Industrial de Guamaré. ... 9
Figura 2 – Organograma da UTPF. .. 11
Figura 3 – Desenho esquemático da área de tratamento do petróleo recebido. 12
Figura 4 – Fluxograma simplificado do processo de tratamento do óleo. 13
Figura 5 – Slug Catcher para recebimento do óleo do campo de Pescada. 14
Figura 6 – Instalações das Estações de Tratamento de Efluentes I, II e III. 16
Figura 7 – Fluxograma de processos realizados na ETE. ... 16
Figura 8 – Vasos de sulfatreat na UTG I. ... 17
Figura 9 – Fluxograma simplificado da UPGN I. ... 19
Figura 10 – Fluxograma simplificado da UPGN III. ... 19
Figura 11 – Instalações da UPGN III. .. 20
Figura 12 – Planilha de Acompanhamento de Potabilidade Mensal. 21
Figura 13 – Planilha de Acompanhamento de Potabilidade Trimestral. 22
Figura 14 – Planilha de Acompanhamento da eficiência dos fornos da ETO. 23
Figura 15 - Amostra coletada no 1º amostrador do tanque TQ-122234. 25
Figura 16 - Resultado da 1ª centrifugação das amostras dos tanques. 27
Figura 17 - À esquerda emulsão do TQ-122221 após centrifugação in natura e, à direita do TQ-122234. ... 28
Figura 18 - Amostras após realização de ensaio para medição de BSW. 29
Figura 19 - Etapas de filtração convencional da amostra do TQ-122236. 30
Figura 20 - Sólido proveniente do tanque TQ-122236.. 30
Figura 21 - Filtração a vácuo da amostra do TQ-122234 (à esquerda) e sólido retido no filtro (à direita). .. 31
Figura 22 – Sólido retido no papel filtro proveniente do tanque TQ-122221............. 31
Figura 23 - Soluções após testes de abaixamento de pH. .. 33
Figura 24 – Sólido proveniente do TQ-122236 atraído pela barra magnética de agitação... .. 34
Figura 25 – Soluções após testes de abaixamento de pH e adição de NaCl. 34

ÍNDICE DE TABELAS

Tabela 1 - Produtos comercializados pela Petrobras. ... 10
Tabela 2 - Resultados dos testes de sulfeto. ... 26
Tabela 3 - Valores de pH nas soluções... 32
SUMÁRIO

1. RESUMO ... 6
2. INTRODUÇÃO ... 7
3. EMPRESA ... 8
 3.1 Dados do estágio ... 8
 3.2 Áreas de atuação ... 8
 3.3 Unidade de Tratamento e Processamento de Fluidos - UTPF ... 10
 3.3.1 Estação de Tratamento de Óleo (ETO) .. 11
 3.3.2 Estação de Tratamento de Efluentes (ETE) .. 14
 3.3.3 Unidade de Processamento de Gás Natural (UPGN) ... 17
4. ATIVIDADES DESENVOLVIDAS .. 20
 4.1 Análise dos fluxogramas de engenharia ... 20
 4.2 Visita às instalações da UTPF em Guamaré/RN ... 20
 4.3 Alimentação de planilhas de Controle de Produtos Químicos, Potabilidade da Água e IQUAI ... 21
 4.4 Elaboração de planilha de acompanhamento de variáveis de processo utilizando software Plant Information (PI) ... 22
 4.5 Execução e elaboração de relatório de testes de sulfeto nos tanques da ETO e Tanque de Recolhimento de Efluentes da ETE .. 24
 4.6 Execução e elaboração de relatório de testes laboratoriais com emulsões provenientes dos tanques de lavagem a frio de Guamaré .. 26
5. IDENTIFICAÇÃO DOS CONTEÚDOS ... 36
6. AVALIAÇÃO DO RETORNO DO ESTÁGIO .. 36
7. REFERÊNCIAS .. 37
1. RESUMO

O presente relatório apresenta informações acerca do Estágio Supervisionado realizado na empresa Petróleo Brasileiro S. A. – PETROBRAS, administrado pelo CIEE, no período de 25 de maio de 2015 a 24 de maio de 2016 em Natal/RN e Guamaré/RN, totalizando 1.056 horas de estágio. Foram executadas atividades relacionadas à análises físico-químicas, auxílio no desenvolvimento de projetos, acompanhamento das unidades operacionais de tratamento de óleo, efluentes e do processamento de gás natural, elaboração de planilhas de acompanhamento das operações, preenchimento de fichas de solicitações de análises de rotina, entre outras.
2. INTRODUÇÃO

Entende-se petróleo como uma mistura de compostos químicos orgânicos (carbono e hidrogênio - hidrocarbonetos) que pode estar no estado físico gasoso ou líquido em razão da quantidade de moléculas pequenas ou moléculas maiores, nas condições normais de temperatura e pressão. Com os avanços, o petróleo se impôs como fonte de energia crucial para o desenvolvimento das economias mundiais. Além da grande utilização de derivados, novos compostos sintéticos são desenvolvidos por meio do petróleo, como: plásticos, borrachas, tintas, corantes, adesivos, detergentes, explosivos, cosméticos, entre outros.

No Brasil, a história relata que em 1858, o Marquês de Olinda concedeu a José Barros Pimentel através do Decreto nº 2.266 o direito de extrair mineral betuminoso em terrenos situados às margens do Rio Maraú, na Bahia. Porém, as primeiras notícias relacionadas à pesquisa ocorrem em Alagoas em 1891, com a presença de sedimentos argilosos betuminosos no litoral e a primeira perfuração realizada com o objetivo de encontrar petróleo só foi realizada em 1897, por Eugênio Ferreira de Camargo, em Bofete, no estado de São Paulo.

Em 1919, foi criado o Departamento Nacional de Produção Mineral (DNPM), que foi responsável pela perfuração do poço DNPM-163, em Lobato, na Bahia, que veio a ser o descobridor de petróleo no Brasil, em 21 de janeiro de 1939.

A partir de 1953, no governo Getúlio Vargas, foi instituído o monopólio estatal do petróleo com a criação da Petrobras.

O grande fato dos anos 70 foi a descoberta da Província Petrolífera da Bacia de Campos e, nessa mesma década, a descoberta de petróleo na plataforma continental do Rio Grande do Norte, no campo de Ubarana.

Na década de 80, outro grande marco para o estado do Rio Grande do Norte foi a constatação de petróleo em Mossoró, quer viria a se constituir em pouco tempo, a segunda maior área produtora de petróleo do país. Atualmente, o Rio Grande do Norte, encontra-se em sexto na distribuição da produção de petróleo e gás no país, segundo Boletim da Produção de Petróleo e Gás Natural publicado pela ANP em setembro de 2016.

3. EMPRESA

3.1 Dados do estágio

- **Local**: Petróleo Brasileiro S.A. – PETROBRAS
- **Lotação**: Natal (com frequentes visitas ao Pólo Industrial de Guamaré)
- **Setor**: Unidade de Tratamento e Processamento de Fluidos – UTPF
- **Período do estágio**: 25 de maio de 2015 a 24 de maio de 2016
- **Profissional responsável pelo estágio na empresa**: Ricardo José Lins Neves
- **Função na empresa**: Engenheiro de Processamento Sênior
- **Formação**: Engenheiro Químico

3.2 Áreas de atuação

As atividades centrais da Petrobras são a exploração e a produção do petróleo e gás natural.

A maior parte das reservas encontra-se em campos marítimos, o que leva as atividades de perfuração a atingirem elevadas profundidades e desafios tecnológicos a serem vencidos.

Além da exploração e produção de Petróleo e Gás Natural, a Petrobras atua no refino, na oferta e distribuição de gás natural, petroquímica e fertilizantes, geração de energia elétrica, produção de biocombustíveis e transporte e comercialização dos produtos.

Suas principais operações encontram-se nas bacias, refinarias, terminais e oleodutos, termelétricas, usinas de biodiesel, usinas de etanol, gasodutos e fábricas de fertilizantes.
As atividades de prospecção, exploração e produção de petróleo e gás natural na Bacia Potiguar são realizadas pela Unidade Operacional do Rio Grande do Norte e Ceará (UO/RNCE), com sede em Natal e com base de apoio em Mossoró.

Com o intuito de centralizar toda essa produção, a Petrobras implantou o Pólo Industrial de Guamaré, situado nas proximidades da cidade de Guamaré/RN. O Pólo é constituído por modernas instalações industriais, onde são desenvolvidas as atividades de tratamento e processamento do petróleo e gás natural, que são transformados em produtos de consumo para atender os mercados nacional e internacional. A seguir, a figura 1 retrata o Pólo de Guamaré.

![Figura 1 - Vista panorâmica do Pólo Industrial de Guamaré. Fonte: Apresentação UTPF, maio de 2013.](image)

No Pólo Industrial é possível encontrar um terminal de armazenamento e transferência de petróleo, três unidades de processamento de gás natural para produção de GLP e gás industrial, plantas de produção de óleo diesel, gasolina natural C5, nafta e querosene de aviação.

Quanto às políticas de responsabilidade social, a empresa apresenta alguns compromissos com a sociedade de forma a assegurar que o Sistema Petrobras esteja comprometido com os Direitos Humanos, respeitado a diversidade humana e a força de trabalho que a representa, além disso, a empresa busca a sustentabilidade dos investimentos sociais para uma inserção
digna e produtiva das comunidades, bem como uma política de segurança, meio ambiente, eficiência energética e saúde sistematizada e orientada por diretrizes bem afirmadas dentro da empresa.

A Petrobras apresenta uma extensa lista de produtos comercializados, que apresentam alta tecnologia e encontram-se divididos em seguimentos variados, conforme apresentado na tabela 1 a seguir.

Tabela 1 - Produtos comercializados pela Petrobras.

<table>
<thead>
<tr>
<th>Automotivos</th>
<th>Domésticos</th>
<th>Industriais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasolina</td>
<td>Gás natural residencial</td>
<td>Gás natural industrial</td>
</tr>
<tr>
<td>Gás natural veicular</td>
<td>Gás líquefeito de petróleo</td>
<td>Parafina</td>
</tr>
<tr>
<td>Óleo diesel</td>
<td>Aguarrás</td>
<td>Óleo básico</td>
</tr>
<tr>
<td>Etanol</td>
<td></td>
<td>Lubrificante industrial</td>
</tr>
<tr>
<td>Óleo lubrificante</td>
<td></td>
<td>Borra de refino</td>
</tr>
<tr>
<td>ARLA 32 (Agente Redutor Líquido Automotivo)</td>
<td></td>
<td>Óleo diesel S-500</td>
</tr>
<tr>
<td></td>
<td>Coque verde de Petróleo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gás líquefeito de petróleo (GLP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graxa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glicerina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solvente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enxofre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Óleo combustível</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ácido graxo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oleína</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Unidade de Tratamento e Processamento de Fluidos - UTPF

A UTPF, local de realização do presente estágio, está inserida no contexto da Unidade de Operação do Rio Grande do Norte e Ceará e suas
instalações estão locadas no Pólo Industrial de Guamaré, enquanto que a Operação está dividida entre o Pólo e a Base em Natal/RN.

Especificamente, o estágio realizou-se no setor de Operação da UTPF (OPF), uma vez que a gerência encontra-se segregada em quatro setores, conforme apresentado no organograma da figura 2:

![Organograma da UTPF](image)

Figura 2 – Organograma da UTPF.

Com relação às áreas operacionais, a UPTF contempla: uma Estação de Tratamento de Óleo (ETO), três Estações de Tratamento de Efluentes (ETE), três Unidades de Processamento de Gás Natural (UPGN) e uma Estação de Tratamento de Água (ETA), esta última destinada ao tratamento de água a ser utilizada em alguns dos processos e de uso doméstico nas instalações do Pólo de Guamaré. Em virtude do não aprofundamento do estágio nessa instalação, não será abordado no presente relatório.

3.3.1 Estação de Tratamento de Óleo (ETO)

A ETO possui por finalidade o tratamento e especificação do óleo proveniente dos campos terrestres e marítimos da Bacia Potiguar.

O petróleo que provém dos campos de produção em terra é recebido em tanques de lavagem a frio, nos quais ocorre o processo de separação água-óleo em virtude da diferença de densidade dos fluidos. O efluente situado na parte inferior dos tanques é encaminhado à ETE, enquanto que o óleo segue para os tanques de lavagem a quente, onde é aquecido com um óleo térmico e esse tratamento térmico proporciona remoção do restante da água.
Quanto ao petróleo proveniente das plataformas marítimas do campo de Ubarana, este é recebido em um vaso separador, no qual é recuperada uma parcela de gás natural, que hoje segue para o flare, porém, futuramente será encaminhado à UPGN para processamento. A fase líquida segue para os tanques de lavagem a quente.

Por fim, todo o petróleo tratado é especificado e medido e encaminhado aos tanques da Refinaria Potiguar Clara Camarão (RPCC) e à Transpetro.

Nas figuras 3 e 4 a seguir, tem-se uma representação da esquemática da área de tratamento do petróleo recebido no Pólo, bem como o fluxograma simplificado de processo, respectivamente.

Figura 3 – Desenho esquemático da área de tratamento do petróleo recebido.
Ainda com relação ao recebimento de óleo, há o processo de recebimento do petróleo proveniente do campo de Pescada, o qual não obedece a mesma sequência de tratamento dos outros campos, uma vez que apresenta um fluxo multifásico, com a presença de gás em significativa quantidade. Diante disso, o petróleo é recebido em coletor de condensado, denominado Slug Catcher, que corresponde a tubulações levemente inclinadas, que favorecem a separação da fase gasosa da fase líquida e seu dimensionamento corresponde a um tanque de dimensões inviáveis a serem instaladas na área operacional, conforme se pode observar na figura 5 a seguir.
Figura 5 – Slug Catcher para recebimento do óleo do campo de Pescada.

A fase líquida separada no coletor de condensado segue para a ETO, enquanto que a fase gasosa vai para a Unidade de Processamento de Gás Natural.

3.3.2 Estação de Tratamento de Efluentes (ETE)

A ETE tem por objetivo tratar o efluente oriundo do tratamento de óleo da UTPF (ETO), o qual corresponde à maior carga e provém dos tanques de lavagem a quente e a frio, bem como dos efluentes provenientes dos tanques operados pela Transpetro, das dessaladoras da Refinaria Potiguar Clara Camarão (RPCC), bem como da solução aquosa de soda cáustica utilizada para lavagem de Nafta também na RPCC.

Quanto aos processos realizados na ETE tem-se uma carga constituída de efluentes oriundos de processos distintos que segue para um dique intitulado Dique 02, o qual exerce a função de dique pulmão e tem por principal finalidade estabilização da carga que o alimenta, onde há uma recuperação inicial de óleo que é separado por ação da força gravitacional.

Posteriormente, o efluente é encaminhado ao Separador de água-óleo, constituído por dez tanques longitudinais com o intuito de favorecer um fluxo em regime laminar que favorecerá a separação do fluido menos denso (óleo) da carga efluente remanescente. O óleo coletado no Dique 02, bem como no Separador água-óleo é encaminhado à ETO.
Após a etapa citada anteriormente o efluente segue para o Tanque de Recolhimento de Efluentes (TRE-01), no qual ainda há uma parcela de recuperação de óleo. Do TRE-01, a carga é bombeada e distribuída entre as ETE I, II e III, que se compõem, basicamente, de tanques de mistura rápida e lenta e flotadores.

Primeiramente, o efluente é bombeado para o tanque de mistura rápida, no qual recebe o polieletrólito, responsável pela coagulação e floculação do óleo e o peróxido de hidrogênio que reduz o teor de sulfetos no efluente. O processo de homogeneização do efluente com os produtos químicos dosados é favorecido pela turbulência no tanque.

Em seguida, o efluente passa de regime turbulento para laminar no tanque de mistura lenta, em decorrência da existência de placas transversais, o que proporciona novamente a floculação do óleo.

Por fim, o efluente é submetido ao último processo de separação nos flotadores. A flotação ocorre por meio da injeção do floculante e de água saturada com ar. O floculante possui afinidade química com o óleo, formando um aglomerado. Este aglomerado, por sua vez, possui afinidade com as gotículas de ar injetadas na água, formando um sólido de baixa densidade, que "sobe" devido ao empuxo. O óleo flotado é coletado na superfície por palhetas que rotacionam periodicamente e o empurram para calhas coletoras.

Após os processos de tratamento o efluente segue para descarte no mar por meio de emissários submarinos.

Nas figuras 6 e 7 que seguem tem-se uma visão das instalações das Estações de Tratamento de Efluentes I, II e III, em seguida, um fluxograma das etapas dos processos de tratamento dos efluentes.
Figura 6 – Instalações das Estações de Tratamento de Efluentes I, II e III.

Figura 7 – Fluxograma de processos realizados na ETE.
3.3.3 Unidade de Processamento de Gás Natural (UPGN)

O gás natural é uma mistura de hidrocarbonetos gasosos cuja composição abrange do metano até hidrocarbonetos mais pesados, como o decano. Apresenta pequenas quantidades de componentes diluentes como nitrogênio e vapor d’água, além de contaminantes, como o gás sulfídrico e dióxido de carbono.

O tratamento do gás consiste no conjunto de processos aos quais o gás é submetido para remoção ou redução dos contaminantes. Compreende os processos de desidratação para evitar corrosão e formação de hidratos, e dessulfurização para remoção dos compostos de enxofre, como H2S, mercaptans, dissulfeto de carbono, etc. Na UTPF, esses processos são realizados nas chamadas Unidades de Tratamento de Gás (UTGs), retratadas na figura 8 a seguir.

Figura 8 – Vasos de sulfatreat na UTG I.

Posteriormente, o gás é enviado a uma UPGN, onde é promovida a separação das frações leves das pesadas.

Antes de processado, o gás apresenta fase líquida chamada de condensado, o qual é separado da fase gasosa. Após processado na UPGN, a
fase líquida é denominada Líquido de Gás Natural (LGN), enquanto que o gás residual é chamado de gás industrial.

Os processos que constituem as UPGNs tem como função a diminuição da temperatura e/ou aumento da pressão do gás, são estes:

- **Refrigeração simples:** consiste na condensação dos hidrocarbonetos mais pesados por meio da redução da temperatura. Esses líquidos condensados são drenados para vasos;

- **Absorção refrigerada:** submete-se o gás a um contato com um fluido auxiliar numa torre a alta pressão e baixa temperatura, obtida com o uso de fluido refrigerante;

- **Turboexpansão:** o abaixamento da temperatura do gás, através de expansão numa turbina a fim de provocar a separação de hidrocarbonetos condensáveis mais pesados;

- **Expansão Joule-Thompson:** expansão do gás numa válvula que provoca redução da pressão e pode ser utilizada como refrigeração auxiliar.

Por fim, o gás é enviado para as torres de “corte” para separação das frações, são as torres demetanizadora, deetanizadora e desbutanizadora.

A seguir tem-se os fluxogramas de processos da UPNG I, cujo mecanismo de refrigeração é a absorção refrigerada, e das UPGNs II e III, que utilizam turbo-expansão.
Figura 9 – Fluxograma simplificado da UPGN I.
Fonte: Apresentação UTPF, 2015.

Figura 10 – Fluxograma simplificado da UPGN III.
Fonte: Apresentação UTPF, 2015.
Na figura 11 a seguir podem ser visualizadas as instalações físicas da UPGN III situada no Pólo de Guamaré.

Figura 11 – Instalações da UPGN III.

4 ATIVIDADES DESENVOLVIDAS

4.1 Análise dos fluxogramas de engenharia

Inicialmente, para conhecimento dos processos realizados na UTPF, foram analisados os fluxogramas de engenharia, os quais contemplam os equipamentos e instrumentos de medição necessários aos processos. Estes fluxogramas encontram-se disponíveis no em sistema de documentação interna da Petrobras e podem ser acessados mediante necessidade.

4.2 Visita às instalações da UTPF em Guamaré/RN

As visitas à área industrial referem-se às instalações situadas no Pólo de Guamaré na cidade de Guamaré/RN e que estão sob a responsabilidade da UTPF: ETO, ETE, ETA e UPGNs.
4.3 Alimentação de planilhas de Controle de Produtos Químicos, Potabilidade da Água e IQUAI

Nos processos de tratamento e processamento realizados na UTPF são utilizados alguns produtos químicos na ETO, ETE e EIA, que precisam ser controlados em relação a suas dosagens utilizadas.

Para esse controle, era realizada a alimentação semanal de uma planilha que mantém registrados esses volumes gastos todos os dias de cada mês: sequestrante de oxigênio, biocidas, anti-incrustante, polieletrolito, peróxido de hidrogênio e desemulsificantes.

Além disso, análises laboratoriais para monitoramento da água tratada na ETA e ETE são realizadas mensalmente e trimestralmente tanto para controle interno quanto para prestação de contas junto aos órgãos ambientais. Diante disso, fez parte das atividades do estágio o acompanhamento de parâmetros químicos de qualidade, solicitados pelas gerências de interesse e pelos órgãos ambientais responsáveis.

Além dessas, outra planilha denominada planilha IQUAI (Índice de Qualidade da Água de Injeção) era utilizada como acompanhamento de parâmetro de qualidade para cálculo do índice de qualidade da água utilizada para injeção no campo de Ubarana (mar).

Nas figuras 12 e 13 a seguir, têm-se exemplos das planilhas utilizadas para acompanhamento da potabilidade mensal e trimestral, respectivamente.

![Figura 12 – Planilha de Acompanhamento de Potabilidade Mensal.](image-url)
4.4 Elaboração de planilha de acompanhamento de variáveis de processo utilizando software Plant Information (PI)

Para monitoramento, acompanhamento e registro das variáveis de todos os processos de suas plantas industriais, a Petrobras utiliza o software Plant Information (PI), o qual reúne informações que provém dos seus instrumentos de medição instalados nos equipamentos.

Foram elaboradas, durante o período de estágio, planilhas para monitoramento do teor de H2S nos vasos destinados ao tratamento de gás, denominados vasos sulfatreat (ver figura 8), levantamento de informações relacionadas às análises de composição do GLP através de dados do laboratório de análises localizado em Guamaré (ilab) e do analisador de campo (cromatógrafo local).

Também foi elaborada planilha de acompanhamento das variáveis dos fornos de aquecimento do óleo térmico utilizado nos tanques de lavagem à
A planilha tinha por finalidade calcular a eficiência dos fornos no momento em que estavam em operação, a partir de dados obtidos em campo e através do PI. Os fornos da ETO utilizam o gás produzido na própria UPGN como combustível e suas características para uso na planilha foram obtidas através das análises realizadas diariamente no gás. Na figura 14 a seguir pode-se visualizar a interface da planilha desenvolvida.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALORES CONSTANTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidade Óleo Térmico (kg/m³)</td>
<td>888,2</td>
<td>Calor específico óleo térmico</td>
<td>0,88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI Gás Combustível (KJ/m³)</td>
<td>20658</td>
<td>Calor específico óleo térmico (KJ/kg °C)</td>
<td>2,42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALORES PI

Data (mes/dia e hora de leitura)	16/11/2016 00:00	16/11/2016 01:00	16/11/2016 02:00	16/11/2016 03:00	16/11/2016 04:00	16/11/2016 05:00	16/11/2016 06:00	16/11/2016 07:00	16/11/2016 08:00	16/11/2016 09:00	16/11/2016 10:00	16/11/2016 11:00	16/11/2016 12:00	16/11/2016 13:00	16/11/2016 14:00	16/11/2016 15:00	16/11/2016 16:00	16/11/2016 17:00	16/11/2016 18:00	16/11/2016 19:00	16/11/2016 20:00	16/11/2016 21:00	16/11/2016 22:00	16/11/2016 23:00
Temperatura de inalação do Óleo Térmico	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00	90,00
Temperatura do Óleo Térmico – Zona de reunião (Pavão)	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	
Temperatura do Óleo Térmico – Zona de reunião (Pavão)	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	
Temperatura do Óleo Térmico	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	26,40	
Vazão de óleo térmico (m³/h)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Vazão de gás combustível (m³/h)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

Figura 14 – Planilha de Acompanhamento da eficiência dos fornos da ETO.

A seguir tem-se a fórmula utilizada na planilha para cálculo da eficiência, utilizados as referidas unidades de referência do PI.

\[
\text{Eficiência (\%)} = \frac{m \cdot c \cdot \Delta T}{w \cdot PCI} \cdot 100
\]

Onde:
- \(m\) = massa de óleo térmico
- \(c\) = calor específico do óleo térmico
- \(\Delta T\) = Temperatura de Saída do óleo térmico – Temperatura de entrada do óleo térmico no forno
- \(w\) = vazão mássica de gás combustível no forno
- \(PCI\) = Poder calorífico do gás combustível
4.5 Execução e elaboração de relatório de testes de sulfeto nos tanques da ETO e Tanque de Recolhimento de Efluentes da ETE

Os testes foram realizados no Pólo de Guamaré durante o período de estágio, com o objetivo de descrever o fenômeno de formação de borras sobrenadantes e sua relação com os teores de sulfetos nas amostras.

As amostras de água foram coletadas no TRE, no 1º amostrador de costado dos tanques TQ-122221, TQ-122234 e TQ-122237 e nos 1º e 5º amostradores do tanque TQ-122225. Os ensaios foram repetidos após a dosagem de peróxido de hidrogênio a 70%, conforme utilizado na Estação de Tratamento de Efluentes de Guamaré, para observação do comportamento do teor de sulfetos nas amostras analisadas.

Materiais utilizados

- Recipientes plásticos de 250 mL (para coleta das alíquotas);
- Solução de Hidróxido de Sódio e Acetato de Zinco;
- Reagentes para conferir coloração à amostra;
- Água desmineralizada;
- Amostras dos tanques TQ-122221, TQ-122225, TQ-122234 e TQ-122237;
- Amostra de peróxido de hidrogênio a 70%.
- Cubetas de quartzo;
- Espectrofotômetro.

Procedimentos Experimentais

Anteriormente à coleta das amostras, prepararam-se os frascos submetendo-os a uma limpeza com acetona e adicionando-se uma solução de hidróxido de sódio e acetato de zinco, conforme procedimento padrão para realização dos testes de sulfeto.
Para realização dos testes, coletaram-se amostras em duplicata do TRE, do tanque 25 nos 1º e 5º amostradores e nos tanques TQ-122221, TQ-122237 e TQ-122234 apenas no 1º amostrador.

Coletada a amostra do 1º amostrador do tanque TQ-122234, verificou-se uma impossibilidade de realização do teste de sulfeto devido à grande quantidade de óleo presente, conforme é possível visualizar na figura 15 a seguir.

Figura 15 - Amostra coletada no 1º amostrador do tanque TQ-122234.

Após a coleta, as amostras foram inseridas em um recipiente com gelo e aguardou-se a decantação dos sólidos em suspensão.

Observada a decantação dos sólidos, descartou-se parte da fase aquosa e completou-se com água. Agitou-se o frasco e adicionou-se 25mL da amostra na cubeta de quartzo.

Por fim, adicionou-se 1mL de cada um dos reagentes responsáveis pela coloração azul característica que indica a presença de sulfeto e varia de tom conforme a concentração. Foram aguardados 10 minutos para que ocorresse a reação em sua totalidade e, posteriormente a cubeta foi inserida no espectrofotômetro.

Para execução dos testes de sulfeto após a dosagem de peróxido de hidrogênio, os procedimentos descritos foram repetidos, contudo, imediatamente após a chegada das amostras dosou-se 0,01 mL de peróxido de
hidrogênio em cada frasco de 250mL para se obter a concentração de 43 ppm em volume, equivalente à utilizada em campo.

Os resultados obtidos encontram-se na tabela 2 a seguir:

Tabela 2 - Resultados dos testes de sulfeto.

<table>
<thead>
<tr>
<th>Local</th>
<th>Sem dosagem de peróxido</th>
<th>Com dosagem de peróxido</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRE</td>
<td>39,25</td>
<td>12,5</td>
</tr>
<tr>
<td>TQ-122225 - 1º amostrador</td>
<td>86,8</td>
<td>84,6</td>
</tr>
<tr>
<td>TQ-122225 - 5º amostrador</td>
<td>75,3</td>
<td>29,5</td>
</tr>
<tr>
<td>TQ-122221 - 1º amostrador</td>
<td>27,2</td>
<td>26,3</td>
</tr>
<tr>
<td>TQ-122237 - 1º amostrador</td>
<td>9,3</td>
<td>10,7</td>
</tr>
</tbody>
</table>

Valores apresentados medidos em mg S/L.

Posteriormente à realização dos testes, concluiu-se que as maiores concentrações de sulfeto foram identificadas nas amostras provenientes do TQ-122225.

Quanto à eficiência do peróxido nos ensaios realizados, observou-se redução significativa nas amostras do TRE e do 5º amostrador do TQ-122225, situando-se em torno de 68 e 61%, respectivamente.

Os resultados obtidos para as amostras oriundas do TQ-122237 comportaram-se de forma contrária ao esperado, uma vez que a concentração aumentou aproximadamente 13% com a adição de peróxido. Atribui-se o fato a um possível erro na amostragem no ponto de coleta ou um desvio no procedimento de realização do ensaio naquele momento e que, para contraprova havia a necessidade de realização de outros ensaios no mesmo ponto adotando-se as mesmas condições analíticas.

4.6 Execução e elaboração de relatório de testes laboratoriais com emulsões provenientes dos tanques de lavagem a frio de Guamaré
Os testes foram realizados no laboratório da RPCC em Guamaré com objetivos de descrever os ensaios realizados com amostras de emulsão proveniente de três dos tanques de lavagem a frio da Estação de Tratamento de Óleo – ETO de Guamaré, TQ-1222-21, TQ-1222-34 e TQ-1222-36.

Materiais utilizados

- Recipientes plásticos de 1L (para coleta das alíquotas);
- Solventes orgânicos, ex.: Tolueno, Xileno, QAV e Clorofórmio;
- Água desmineralizada;
- Amostra de emulsão dos tanques 21, 34 e 36;

Procedimentos Experimentais

Centrifugação das amostras *in natura*:

Inicialmente, foi solicitado ao operador que a coleta das amostras fosse efetuada no ponto onde possivelmente encontrava-se a interface óleo/água naquele momento nos tanques TQ-122221, TQ-122234 e TQ-122236.

Realizou-se a centrifugação das amostras *in natura*. Assim que retiradas do recipiente de amostragem, foram submetidas à centrífuga sem adição de produto químico. A seguir, na figura 16, têm-se as amostras após a 1ª centrifugação *in natura*.

![Figura 16 - Resultado da 1ª centrifugação das amostras dos tanques. (À direita amostra do TQ-122221, à esquerda do TQ-122236 e do TQ-122234 no centro.)](image)
Conforme observado na figura 13, as amostras dos tanques TQ-122234 e TQ-122221 não se separaram efetivamente quando centrifugadas sem a injeção de desemulsificante, já no tanque TQ-122236 observou-se significativa quantidade de água separada da fase oleosa.

O procedimento de centrifugação in natura foi realizado por 2 vezes e os resultados obtidos foram os mesmos.

As imagens retratadas na figura 17 a seguir foram obtidas após a centrifugação descrita anteriormente. Nelas é possível observar baixa fluidez da emulsão dos tanques TQ-122221 e TQ-122234, uma vez que o técnico inverte o recipiente e a emulsão não escoa. A remoção da emulsão dos frascos só foi possível utilizando-se solvente orgânico e agitação.

![Figura 17 - À esquerda emulsão do TQ-122221 após centrifugação in natura e, à direita do TQ-122234.](image)

Ensaios de BSW:

Com o intuito de promover uma melhor separação das fases realizaram-se testes de *Basic Sediments and Water* - BSW com as amostras provenientes dos tanques utilizando a metodologia padrão para análises de rotina do laboratório.

As análises de BSW consistem, basicamente, na dosagem de determinada quantidade de tolueno (solvente orgânico utilizado) com as amostras de emulsão e dosagem de desemulsificante que promoverá melhor
separação das fases. As amostras preparadas são submetidas à centrifugação a 60ºC durante 10 min, com frequência de rotação de 1800 rpm.

Após a centrifugação, foi observada uma melhor separação entre as fases oleosa e aquosa, bem como a decantação dos sedimentos na parte inferior do recipiente, conforme é possível visualizar na figura 18 a seguir.

Figura 18 - Amostras após realização de ensaio para medição de BSW.

Analisando-se os ensaios de BSW observou-se uma maior quantidade de sedimentos na amostra oriunda do tanque TQ-122236. Notou-se, ainda, a presença de um sólido entre as fases oleosa e aquosa, o qual apresentou-se em maior quantidade na amostra do TQ-12221. Foi interesse da análise tentar a caracterização deste sólido, o qual foi separado por meio de filtração.

Filtração para obtenção do sólido:

Para separação da parte mais sólida removeu-se maior quantidade possível de óleo e de água de cada recipiente com auxílio de uma seringa e o fluido remanescente foi submetido à filtração.

Inicialmente, utilizou-se o método de filtração convencional para uma tentativa de obtenção do sólido situado na interface óleo/água das amostras. Na figura 19 a seguir observam-se as etapas de filtração da amostra do TQ-122236.
Figura 19 - Etapas de filtração convencional da amostra do TQ-122236.

Ressalta-se que, durante a etapa de filtração foi adicionado tolueno a fim de se remover os compostos orgânicos agregados ao sólido.

O material sólido retido no papel filtro obtido com a filtração pelo método convencional encontra-se representado na figura 20 abaixo.

Figura 20 - Sólido proveniente do tanque TQ-122236.

Com o intuito de promover uma filtração mais rápida adotou-se o sistema de filtração a vácuo para as amostras posteriores.

Na figura 21 é possível visualizar a etapa de filtração da amostra do TQ-122234, bem como o sólido retido no papel filtro após lavagem com tolueno.
Figura 21 – Filtração a vácuo da amostra do TQ-122234 (à esquerda) e sólido retido no filtro (à direita).

Para a amostra do TQ-122221 foi repetido o procedimento de filtração a vácuo descrito anteriormente e, a na figura 22 encontra-se representado o sólido retido no papel filtro oriundo da amostra coletada no TQ-122221 de lavagem a quente.

Figura 22 – Sólido retido no papel filtro proveniente do tanque TQ-122221.

Por fim, filtraram-se as amostras da segunda batelada de testes de BSW. Nesta etapa foram utilizados além do tolueno que já estava presente nas amostras, Xileno, QAV e Clorofórmio a fim de se tentar eliminar maior quantidade de hidrocarbonetos associados aos sólidos retidos nos papeis de
filtros. Os resultados obtidos foram os mesmos das etapas anteriores de filtração.

Os sólidos separados nas etapas de filtração foram posteriormente enviados para caracterização. O objetivo da etapa de caracterização será identificar os percentuais de orgânicos e inorgânicos, bem como a composição dos compostos presentes.

Testes de abaixamento de PH e salinidade:

De posse dos sólidos obtidos nas etapas de filtração descritas, realizaram-se ensaios de tentativa de dissolução desses sólidos.

Para preparação das soluções, pesou-se aproximadamente 0,1g do sólido obtido por filtração de cada amostra de tanque em 3 béqueres distintos e, posteriormente, completou-se com 50 mL de água desmineralizada em cada. Por fim, a solução foi agitada utilizando-se agitador magnético.

Inicialmente, mediu-se o pH inicial de cada solução cujos resultados podem ser visualizados na tabela 3 a seguir.

<table>
<thead>
<tr>
<th>Tabela 3 - Valores de pH nas soluções.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Um a um os béqueres foram submetidos a dosagem contínua de Ácido Clorídrico (HCl), enquanto que monitorava-se o abaixamento do pH da solução e o comportamento do sólido na solução. Esse procedimento foi repetido para cada um dos béqueres contendo os sólidos provenientes de cada tanque.

Adicionou-se ácido até que o pH chegasse a 1, porém não foi observada dissolução ou alteração do comportamento do sólido na solução.

Na figura 23 a seguir pode-se visualizar as soluções após os ensaios de abaixamento de pH.
Figura 23 – Soluções após testes de abaixamento de pH.

Observa-se nas imagens que os sólidos provenientes dos tanques TQ-122221 e TQ-122236 decantaram após o abaixamento do pH das soluções que os continham, enquanto que o sólido oriundo do TQ-122234 comportou-se de forma oposta, situando-se acima da fase aquosa.

Finalizando os ensaios para tentativa de dissolução dos sólidos, utilizou-se a mesma quantidade de sólido citada anteriormente, 0,1g, em novos béqueres com 50 mL de água e, mediante agitação, adicionou-se aos poucos NaCl até completar a quantidade de 20g de sal na solução.

Os resultados observados quanto ao comportamento dos sólidos foram semelhantes aos obtidos anteriormente, quando se adicionou sal à solução extremamente ácida.

Ao se adicionar a barra magnética de agitação (peixinho) nas soluções que continham os sólidos oriundos dos tanques TQ-122236 e TQ-122221, o material uniu-se à barra magnética em ambas as soluções, conforme pode ser observado na figura 24 a seguir.
Figura 24 – Sólido proveniente do TQ-122236 atraído pela barra magnética de agitação.

Utilizando-se as soluções de pH já reduzidos pesou-se 20g de Cloreto de Sódio (NaCl) e adicionou-se aos poucos em cada um dos béqueres enquanto a solução era agitada, até que fossem adicionados os 20g totalmente.

Pôde-se observar que o sólido não foi dissolvido em nenhuma das 3 soluções mediante a adição de NaCl na solução com pH muito baixo.

Na figura 25 a seguir pode-se visualizar o comportamento dos sólidos provenientes dos tanques nas soluções preparadas para os testes.

Figura 25 – Soluções após testes de abaixamento de pH e adição de NaCl.
Com a adição de NaCl às soluções percebeu-se que o sólido do TQ-122236 se dispersou na solução de modo que, parte decantou e outra parte sobrenadou a solução; enquanto que o do TQ-122221, o qual estava decantado, situou-se acima da solução salina e, por fim, o sólido do TQ-122234 se comportou da mesma forma que anteriormente, sobrenadando a solução.

De posse dos dados provenientes das atividades desenvolvidas em laboratório, concluiu-se primeiramente que, os sólidos provenientes dos tanques TQ-122234, TQ-122236 e TQ-122221 não foram solubilizados quando tratados com ácido clorídrico ou com aumento da concentração de salmoura. Uma segunda conclusão é que os sólidos dos TQ-122236 e TQ-122221 se comportaram de forma semelhante nos testes de abaixamento de pH e aumento da salinidade, enquanto que o material do tanque TQ-122234 aparentemente possui características distintas dos outros dois, o que poderá ser comprovado posteriormente após os testes para identificação dos compostos presentes nesses materiais.

Os testes realizados permitiram a separação dos contaminantes que se localizam na interface água-óleo. Os contaminantes foram enviados para identificação dos compostos envolvidos no Núcleo de Processamento Primário e Reúso de Água Produzida e Resídio (NUPPRAR) localizado na UFRN.

As amostras foram submetidas a ensaios de DRX e FRX para caracterização dos elementos presentes, bem como da forma em que esses elementos se apresentam no sólido. De posse de ensaios prévios, observou-se a presença predominante de óxido de ferro, bem como carbonato de cálcio, sulfeto de ferro, entre outros.

O material encontra-se no laboratório, onde estão sendo realizadas sucessivas caracterizações para apresentações de trabalhos posteriores.
5 IDENTIFICAÇÃO DOS CONTEÚDOS

Durante a realização do estágio na empresa Petrobras, foi possível a identificação de conteúdos vistos no decorrer do curso, os quais foram de grande relevância para o entendimento dos processos.

As disciplinas de Operações Unitárias I e II auxiliaram no entendimento dos processos de separação realizados principalmente na ETE, além do, as disciplinas de Fenômenos de Transporte II e III, as quais se referem à transferência de calor e transferência de massa, respectivamente, foram de fundamental importância para o desenvolvimento das atividades relacionadas ao tratamento do óleo e ao processamento do gás.

Ressalta-se ainda que a realização de acompanhamento de variáveis, monitoramento da variação desses parâmetros e observação do comportamento do processo como um todo está diretamente relacionado ao que foi visto na disciplina de Controle de Processos.

Por fim, nas análises laboratoriais realizadas, foram necessários conhecimentos adquiridos nas disciplinas experimentais, principalmente nas Químicas Experimentais e nas Operações Unitárias Experimentais, bem como conhecimentos teóricos provenientes das Químicas Geral e Inorgânica e Orgânicas I e II.

6 AVALIAÇÃO DO RETORNO DO ESTÁGIO

O estágio na empresa Petrobras contribuiu de forma bastante significativa para o crescimento profissional, uma vez que é uma empresa relevante dentro do cenário nacional e internacional, além disso, para o curso de Engenharia Química é uma das maiores escolas de operações unitárias, de processos, fenômenos de transporte, químicas gerais, entre tantas outras áreas inerentes à nossa formação.

No período de um ano foi possível conviver com pessoas extremamente qualificadas e competentes naquilo que fazem e, para um graduando, trabalhar diariamente com profissionais com essas qualidades e dispostos a ensinar e passar todo conhecimento é de um valor incalculável.
Pessoalmente, a experiência agregou de forma semelhante, visto que a experiência trouxe maturidade para agir em determinadas situações, bem como as amizades que se somaram nesse tempo.

7 REFERÊNCIAS

