VENLAFAXINE AND NORTRIPTYLINE REVERSE ACUTE DEXAMETHASONE-INDUCED DEPRESSIVE-LIKE BEHAVIORS IN MALE AND FEMALE MICE
VENLAFAXINE AND NORTRIPTYLINE REVERSE ACUTE DEXAMETHASONE-INDUCED DEPRESSIVE-LIKE BEHAVIORS IN MALE AND FEMALE MICE

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Farmácia da Universidade Federal do Rio Grande do Norte, como requisito parcial para obtenção do título de Bacharel em Farmácia.

Orientadora: Profa. Dra. Elaine Cristina Gavioli
Coorientador: Victor Anastácio Duarte Holanda

Natal – RN
2019

Orientadora: Elaine Cristina Gavioli.
Coorientador: Victor Anastácio Duarte Holanda.

RN/UF/BS-CCS CDU 615.276

Elaborado por ANA CRISTINA DA SILVA LOPES - CRB-15/263
VENLAFAXINE AND NORTRIPTYLINE REVERSE ACUTE DEXAMETHASONE-INDUCED DEPRESSIVE-LIKE BEHAVIORS IN MALE AND FEMALE MICE

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Farmácia da Universidade Federal do Rio Grande do Norte, como requisito parcial para obtenção do título de Bacharel em Farmácia.

Orientadora: Profa. Dra. Elaine Cristina Gavioli
Coorientador: Victor Anastácio Duarte Holanda

Presidente: Profa. Elaine Cristina Gavioli, Dra. – Orientadora, UFRN

Membro: Profa. Vanessa de Paula Soares Rachetti, Dra., UFRN

Membro: Victor Anastácio Duarte Holanda, Dr., UFRN

Natal, 5 de novembro de 2019
Venlafaxine and Nortriptyline Reverse Acute Dexamethasone-Induced Depressive-Like Behaviors in Male and Female Mice

Federal University of Rio Grande do Norte

Major depression can be triggered by stressful events that promote deregulation of the hypothalamic-pituitary-adrenal axis response and, in some circumstances, persistent elevation of circulating glucocorticoid levels. Animal models are widely used to investigate the mechanisms responsible for the etiology and treatment of major depression. However, to mimic the dysfunction of the hypothalamic-pituitary-adrenal axis in rodents, animals should be exposed to sustained physical and psychological stressful situations. These animal models of depression are labor intensive and impact individual animals differently. Aiming to add evidence for a new acute neuroendocrine model of depression, male and female mice were treated with a single administration of dexamethasone, and behavioral effects were evaluated in the presence and absence of the antidepressants nortriptyline and venlafaxine. Male and female Swiss mice were treated with dexamethasone (0.07 mg/kg, subcutaneously) and the mouse behavior was assessed in the tail suspension and open field tests at 4 h, 24 h, and 7 days after administration. Dexamethasone induced depressogenic-like states in both sexes at 4 and 24 h after injection. Additionally, acute dexamethasone increased latency to body fur licking, thus corroborating the depressive-like behavior. The treatment with nortriptyline and venlafaxine (both at 30 mg/kg, intraperitoneal-ally) blocked dexamethasone-induced increase in the immobility time and the latency to self-care. In conclusion, the present findings suggest that a single administration of dexamethasone induces depressive-like states in male and female mice, and these behavioral alterations are counteracted by conventional antidepressants. Ultimately, these data provide new evidence for an acute neuroendocrine model of depression.

Public Health Significance
Depression causes a significant impact in the public health. Innovative treatments are needed and rodents are widely used to search for new antidepressants. However, it is labor intensive to induce a depressive state in rodents. This study provides an innovative acute way of inducing a depressive state in mice. Our findings showed that a single administration of dexamethasone promotes a depressive state in male and female mice, which is blocked by conventional antidepressants.

Keywords: dexamethasone, major depression, tail suspension test, acute exposure, splash test

Supplemental materials: http://dx.doi.org/10.1037/pha0000263.supp

Major depression is a chronic, complex, and multifactorial psychiatric disorder associated with functional impairment, which is characterized by depressed mood and/or loss of interest in daily activities (anhedonia) and altered motivational behavior, appetite, and sleep (American Psychiatric Association, 2013). A meta-analysis study indicated that estimated 12-month prevalence for major depression is about 5% in the world population (Ferrari et al., 2013). Interestingly, epidemiological studies also reported that

The authors disclosed no actual or potential conflict of interest could appropriately influence or be perceived to influence this work. All authors contributed in a significant way to the manuscript; they read and approved the final manuscript.

Correspondence concerning this article should be addressed to Elaine C. Gavioli, Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Avenue Senador Salgado Filho, 3000 Campus Universitário, Lagoa Nova, Natal, Brazil 59078-970. Email: egavioli@hotmail.com
women typically have a 2-fold increased risk of major depression compared with men (Van de Velde, Bracke, & Leveque, 2010). As is currently known, changes in monoamine neurotransmission do not entirely clarify macro- and microscopic structural alterations reported in major depression (Dean & Keshavan, 2017). Additionally, stressful life events seem to contribute to the etiology of depression. In fact, it is estimated that 85% of depressive patients experienced some stressful event prior to the onset of the disorder (Kessing, Agerbo, & Mortensen, 2003). Additionally, it is described that 40–60% of untreated patients with depression present hypercortisolism related to the activation of hypothalamic-pituitary-adrenal (HPA) axis by stressful events (Gold et al., 1986; Carroll et al., 2012).

Animal models are widely used to investigate the mechanisms responsible for the etiology and treatment of major depression as well as to check the efficacy of new antidepressant drugs. To mimic the dysfunction of the HPA axis in rodents as observed in depressive patients, animals can be exposed to physical and psychological stressful situations or exogenous administration of glucocorticoids (Stern et al. 2010; Czéh, Fuchs, Wisborg, & Simon, 2016). In fact, stress-based animal models of depression (learned helplessness model, chronic mild stress, social defeat model, or chronic corticosterone injection) frequently report significant behavioral changes, such as: (a) increase in the immobility time in behavioral despair tests (i.e., forced swimming and tail suspension tests); (b) change in body weight; (c) decrease in motivational behaviors; and (iv) cognitive impairments and other physiological changes (Söderlund and Lindskog, 2018).

Ideally, an animal model should fulfill at least three major criteria: face, construct, and predictive validity. Briefly, animal models must resemble the human condition in several aspects, including (a) similarity between the behavioral phenotype and the clinical-symptom profile (face validity), (b) amelioration or attenuation by clinical effective antidepressant treatments (predictive validity), and (c) similar neurobiological basis (construct validity; Czéh et al., 2016). It is noteworthy that the most well-validated animal models of depression, including chronic mild stress, social defeat, and intracranial self-stimulation, are labor intensive, which substantially limits the rapid screening of new antidepressant drugs (Söderlund et al., 2018). By contrast, behavioral despair tests, that is, forced swimming and tail suspension tests, are used worldwide because of their ease of use, reliability across laboratories, ability to detect a broad spectrum of antidepressants, and to attend high demands of the pharmaceutical industry for screening new compounds (Czéh et al., 2016). Concerning the tail suspension test, it is based on the observation that mice, after initial escape-oriented movements, develop an immobile posture when placed in an inescapable stressful situation. In this case, it involves the homeostatic stress of being hung in an uncontrollable fashion by their tail (Cryan, Mombereau, & Vassout, 2005). One of the disadvantages of behavioral despair tests is that there is a weak analogy between the depression symptoms experienced by humans and the neurobiology that mediate the depressive-like behaviors in currently existing animal models.

A considerable number of studies used the repeated exogenous administration of glucocorticoids, at low doses, to mimic the dysfunction of the HPA axis in rodents (Stern et al., 2010). This approach evokes significant changes in animal behavior and neurochemistry, including reduced neurogenesis, that parallel many of the core symptoms and neurobiological changes associated with human depression (Stern et al., 2010). Recently some studies tried the single administration of dexamethasone as a trigger stimulus to evoke depressive-like behaviors in mice. This strategy induced changes in the mouse behavior assessed in the forced swimming test (Wróbel, Sereńko, Waž, & Poleszak, 2014; Wróbel, Sereńko, Waž, & Poleszak, 2015; Mesripour, Alihmma, & Hajhashemi, 2018). Aiming to add evidence to this acute neuroendocrine model of depression, this study sought to evaluate the behavioral effects of a single administration of dexamethasone in the tail suspension and splash tests in male and female mice. The effects of the classical antidepressants nortriptyline and venlafaxine were also tested in mice treated with a single dose of glucocorticoid. Our data showed that acute dexamethasone administration can be used as an animal model for depression because of: (a) feasibility, (b) predictive validity similar to the behavioral despair tests, and (c) ability to mimic the HPA axis dysfunction as observed in depressive patients.

Method

Animals

Experiments were performed using Swiss male and female mice bred at the Federal University of Rio Grande do Norte (Natal, Brazil). Mice were 12–14 weeks old (male: 38 – 44 g; female: 32–40 g) and were housed in plastic cages (33 × 10 × 17 cm) in groups of a maximum of 10 under standard conditions (22 ± 1°C; 12 h light:12 h dark cycle, lights on at 6:00 a.m.) with food and water ad libitum. A total number of 176 male and 176 female mice were used to develop this study; the number of animals per group was seven to eight, as detailed in the figure legends. For female mice, after a behavioral test, vaginal smears were collected, as described by Marcondes, Bianchi, and Tanno (2002). Smears were stained with a 2% methylene blue solution. According to the proportion of epithelial cells, cornified cells, and leukocytes, the estrous cycle phases were classified as proestrus, estrus, diestrus, and metaestrus. All behavioral tests were performed during the light cycle (between 10:00 a.m. and 1:00 p.m.). Behavioral studies were approved by the local Ethics Committee in the Use of Animals (Protocol No. 001/2016) and strictly followed the Brazil-ian Law No. 11.794/2008 for the care and use of experimental animals. This study is reported following the Animal Research Reporting In Vivo Experiments guidelines (Kilkenny et al., 2010).

Drugs and Treatments

Dexamethasone (0.07 mg/kg, subcutaneous [sc]; Sigma-Aldrich, St. Louis, MO) was solubilized in 10% ethanol and saline (0.9% NaCl), and it was stored at –20 °C (stoke solution: 0.1 mg/mL). A stored aliquot of dexamethasone was freshly solubilized before ex-periments in saline in a final concentration not exceeding 1.6% ethanol. The antidepressants nortriptyline (30 mg/kg, intraperitoneal [ip]; Novartis Biocências SA, São Paulo, Brazil) and venlafaxine (30 mg/kg, ip; Biosintética Farmacêutica Ltd., São Paulo, Brazil) were solubilized in saline. Negative controls were treated with the same concentration of solvents used to solubilize the drugs and by the same via of administration. All drugs injected were given in a volume of 10 mL/kg. The dosages of dexamethasone (Wróbel et al., 2014;
Wróbel et al., 2015), nortriptyline (Medeiros et al., 2015), and venlafaxine (Millan et al., 2001) used in this study were based on previous findings. A single administration of dexamethasone at sim-ilar dose evoked depressive-like effects in the forced swimming test (Wróbel et al., 2014; Wróbel et al., 2015), whereas conventional antidepressants reduced immobility time in the tail suspension test (Medeiros et al., 2015; Millan et al., 2001). Dexamethasone was administered 4 h, 24 h, or 7 days before behavioral evaluation, whereas acute nortriptyline (30 mg/kg) and venlafaxine (30 mg/kg) were administered 60 min prior to behavioral tests. Animals were randomly assigned for each experimental group. The observer was unaware of the treatment conditions.

Behavioral Tests

Tail suspension test. This behavioral assay was performed as previously described by our research group (Medeiros et al., 2015). Briefly, mice were isolated acoustically and visually and suspended 50 cm above the floor by an adhesive tape placed 1 cm from the tail tip. The test lasted 6 min and the total amount of time each animal remained immobile (i.e., did not struggle) during the session was registered (in seconds). Separate groups of animals were pretreated with dexamethasone 4 h, 24 h, or 7 days before behavioral evaluation in the tail suspension test. Additionally, to test the effects of conventional antidepressants in the dexamethasone-induced depressive-like behaviors, mice were pretreated with the glucocorticoid 4 h prior to the tail suspension test.

Open field test. Spontaneous locomotor activity of mice was assessed in the open field test. A squared black arena (40 × 40 × 40 cm) made of wood covered with impermeable formica was used. The behavioral assay was performed in a test room with dimly light condition. Each mouse was placed in the center of the open field and the distance traveled (in meters) during 5 min was registered. The arena was cleaned with 5% ethanol solution after behavioral evaluation of each mouse. This test was performed 30 min after the tail suspension test, and 4.30 h after the dexamethasone administration. All test sessions were recorded by video camera and analyzed with ANYmaze software, version 4.99 (Stoelting Co., Wood Dale, IL).

Splash test. This test consists of recording the latency to and the total amount of time that mice spent doing self-cleaning behaviors after squirting a sucrose solution (10%) on their dorsal coat. The sucrose solution viscosity instigates animals to self-licking. It is relevant to mention that impaired self-care is ob-served in depressive patients (American Psychiatric Association, 2013). This test was performed with some adjustments as previ-ously reported (Yalcın, Aksu, & Belzung, 2005). Each animal was habituated to an oblong plastic cage (30 × 20 × 13 cm), with black floor and walls, for 20 min, and after this period, animals were squirited with sucrose solution. The test session lasted 6 min and the following parameters were manually registered: latency to the first grooming and total amount of time spent licking the coat (both registered in seconds). Cages were cleaned with 5% ethanol between sessions. This test was performed with mice exclusively subjected to this behavioral assay. Animals were pretreated with dexamethasone 4 h prior to this test.

Data Analysis

Data are presented as mean ± SEM of n animals. Data sets were initially checked for normality, with Shapiro-Wilk’s test, before use of parametric statistical tests. Significant differences between two experimental groups were detected by using an independent Student’s t test. Comparisons between the pretreatment with dexamethasone and the reversal effects of antidepressants were ana-lyzed with two-way ANOVA followed by Bonferroni’s post hoc test, with two independent factors: dexamethasone pretreatment and antidepressants administration. Differences were consid-ered statistically significant when p < .05. Statistical analysis was performed using SPSS software, version 21.0 (IBM SPSS Statistics, OBS Software, São Paulo, Brazil) and GraphPad Prism, version 5.0 (Graph Pad Software Inc., San Diego, CA).

Results

Effects of Acute Dexamethasone Administration on Mouse Behavior

Male mice acutely treated with dexamethasone and exposed to the tail suspension Test 4 and 24 h after treatment displayed a significant increase in the immobility time when compared with its respective control group (Figure 1A, upper panel; Student’s t test, t[14] = 4.603, p < .001; t[14] = 3.093, p = .008, respectively). However, male mice injected 7 days before the tail suspension test displayed a trend to reduce the immobility time when compared with controls (Figure 1A, upper panel; Student’s t test, t[14] = 1.905, p = .072).

Accordingly, female mice acutely treated with dexamethasone 4 and 24 h before the tail suspension test also displayed a significant increase in the immobility time (Figure 1B, upper panel; Student’s t test, t[14] = 5.680, p < .001; t[14] = 2.641, p = .019, respectively). However, no changes were observed in the tail suspension test 7 days after the single administration of dexamethasone in female mice (Figure 1B, upper panel; Student’s t test, t[14] = 0.682, p = .506).

To investigate whether dexamethasone is able to affect locomotor activity, the total distance traveled was evaluated in the open field test in male and female mice. Dexamethasone did not induce any alteration in the spontaneous locomotion assessed in the open field test at 4 h, 24 h, and 7 days after treatment in both sexes (Figure 1, A and B, lower panel).

Effects of Conventional Antidepressants on Acute Dexamethasone-Induced Depressive-Like Behavior

The effects of nortriptyline, a tricyclic antidepressant, were evaluated at 4 h in dexamethasone-treated male and female mice in the tail suspension, open field, and splash tests. Considering male mice, an ANOVA revealed a significant interaction effect between the two independent factors: dexamethasone and nortriptyline (Figure 2A, upper panel; F[1,28] = 6.80, p = .014). Post hoc analysis indicated a significant increase in the immobility time of mice treated with dexamethasone, which was blocked by nortriptyline. Similarly, a significant interaction effect between the inde-pendent factors dexamethasone and nortriptyline was also detected for female mice (Figure 2B, upper panel; F[1,28] = 10.08, p =
Figure 1. Effects of dexamethasone (0.07 mg/kg, sc) on immobility time in the tail suspension test and distance traveled in the open field test in male (A) and female (B) mice assessed 4 h, 24 h, and 7 days after administration (separate group of mice). Data are mean ± SEM of eight mice/group. * p < .05 versus vehicle, according to an unpaired Student’s t test.

.004). Acute administration of dexamethasone increased immobility time in the tail suspension test, and the treatment with nortriptyline counteracted it.

As shown in the first set of experiments, the treatment with dexamethasone did not change the locomotor activity of male and female mice. However, nortriptyline affected distinctly mouse locomotion in male and female mice. In male mice, nortriptyline reduced the distance traveled in both control and dexamethasone-treated mice (Figure 2A, lower panel; two-way ANOVA, nortriptyline effect: F[1,28] = 17.73, p < .001). However, the treatment with nortriptyline did not change spontaneous locomotion in control or dexamethasone-treated female mice (Figure 2B, lower panel; two-way ANOVA, p > .05).

The effects of the 5-hydroxytryptamine (5-HT) and noradrenaline reuptake inhibitor antidepressant venlafaxine were also assessed in dexamethasone-induced depressive-like behavior in male and female mice. According to a two-way ANOVA, an interaction effect between the two independent factors (i.e., dexamethasone and venlafaxine) was detected in the immobility time for male mice (Figure 3A, upper panel; F[1,28] = 14.26, p < .001). Bonferroni’s post hoc test revealed that venlafaxine blocked the dexamethasone-induced increase in the immobility time in the tail suspension test. In female mice, a two-way ANOVA indicated a significant effect for dexamethasone (Figure 3B, upper panel; F[1,28] = 18.30, p < .001) and venlafaxine (Figure 3B, upper panel; F[1,28] = 51.24, p < .001) factors, but an interaction effect between factors was not found (F[1,28] = 2.02, p = .166). Bonferroni’s post hoc analysis showed the treatment with venlafaxine reduced per se the immobility time compared to control and counteracted dexamethasone effects on immobility time in the tail suspension test.

As illustrated in Figure 3A (lower panel), venlafaxine reduced spontaneous locomotion in the open field test in male (two-way ANOVA, F[1,28] = 29.27, p < .001) but not in female mice (Figure 3B, lower panel).

Figures 4 and 5 illustrate the effects of nortriptyline and venlafaxine on the behavior of male and female mice pretreated with a single dose of dexamethasone in the splash test.
The treatment with dexamethasone increased the latency spent to the first self-grooming, but the acute administration of nortriptyline blocked it in male and female mice (Figure 4, A and B, upper panel; two-way ANOVA, interaction effect between dexamethasone and nortriptyline; male: $F_{1,28}=5.28, p = .0293$; female: $F_{1,26}=18.32, p = .0002$). Additionally, the administration of dexamethasone tended to reduce the time spent self-grooming in female mice, but it did not reach significance (Figure 4, A and B, lower panel; two-way ANOVA, dexamethasone effect; male: $F_{1,28}=0.54, p > .05$; female: $F_{1,26}=2.96, p = .0972$).

Concerning the effects of venlafaxine in the splash test, a two-way ANOVA revealed an interaction effect between the independent factors dexamethasone and antidepressant for the latency to self-care in male (Figure 4A, upper panel; $F_{1,28}=14.57, p < .001$) and female (Figure 4B, upper panel; $F_{1,28}=17.54, p < .001$) mice. Post hoc analysis indicated that dexamethasone increased the latency to the first self-grooming and the treatment with venlafaxine counteracted it. The total time spent self-licking was also registered. As shown in Figure 4 (lower panels), a two-way ANOVA revealed an effect for the independent factor dexamethasone for both male and female mice ($F_{1,28}=6.56, p = .016; F_{1,28}=12.13, p = .002$, respectively).

The estrous cycle of the female mice was recorded after each experimental day. The percentage of mice at each estrous cycle phase was depicted in Supplemental Figures 1–4. Supplemental Figure 1 illustrates the percentage of animals at each estrous cycle phase in dexamethasone and vehicle group. A comparable number of mice at each estrous cycle phase was found for both groups. Thus, it excludes any confounding effect because of the prevalence of a given estrous cycle phase in vehicle and dexamethasone-treated groups. The same rationale can be applied for those experimental series in which the effects of nortriptyline and venlafaxine was assessed in the tail suspension and splash tests (Supplemental Figures 2–4).

Discussion

The present study adds new evidence to a neuroendocrine mouse model of depression induced by the acute administration of
dexamethasone in Swiss mice from both sexes. A single administration of a glucocorticoid drug evoked significant increase in the immobility time in the tail suspension test at 4 and 24 h but not 7 days after injection without affecting the spontaneous locomotion in the open field test. Our findings are consonant to previous studies that reported depressive-like behavior after acute administration of dexamethasone in mice (Mesripour et al., 2018; Wróbel et al., 2014, 2015).

Interestingly, it has been shown that acute exposure to corticosterone was unable to reduce the immobility time of rodents in behavioral despair tests (Johnson, Fournier, & Kalynchuk, 2006; Ago et al., 2008; Marks, Fournier, & Kalynchuk, 2009; Lussier, Romay-Tallón, Kalynchuk, & Caruncho, 2011). These differences are probably related to pharmacokinetic and pharmacodynamic distinctions between corticosterone and dexamethasone. In fact, dexamethasone is more potent, long lasting, and selective glucocorticoid receptor agonist compared with corticosterone (Czock, Keller, Rasche, & Häussler, 2005). In addition, a balance between mineralo (MR) and glucocorticoid receptors (GR) activation is proposed as a physiological response under a stressful event. Thus, an imbalance in MR:GR activation may induce HPA axis dysregulation, leading to impaired behavioral adaptation, which can enhance susceptibility to stress-related mental disorders (de Kloet, 2014). In this sense, dexamethasone evokes an imbalance of MR × GR activation, affecting brain functions in a distinct manner compared with the endogenous hormone corticosterone.

The findings described herein are relevant and may add evidence to a new animal model of depression. The main advantages of this acute neuroendocrine model of depression are: (a) a rapid depressogenic effect was induced by dexamethasone; (b) within the period of 24 h, more than one behavioral test using the same treated mouse can be conducted; (c) male and female mice (despite...
the estrous cycle phase) presented similar depressogenic behavior after acute dexamethasone administration; (d) increased the sensitivity of the tail suspension test to the effects of antidepressant drugs because as reported here a single administration of nortriptyline and venlafaxine, at doses widely showed to be antidepressant (for a review see: Cryan et al., 2005), did not consistently reduced immobility per se in the tail suspension test in male and female mice (Figures 2 and 3). Notably, test parameters and treatment-sensitive behavioral indices are not always the same for male and female rodents in animal models of depression, as reviewed by Kokras and Dalla (2014). Therefore, the animal model presented in this study is distinguished because mice from both sexes showed similar depressive-like behavior to acute dexamethasone administration, and then male and female mice can be easily compared using the same behavioral parameters.

The pharmacological validation of the dexamethasone-induced, depressive-like behaviors was also evaluated by testing the effects of two conventional antidepressants, nortriptyline and venlafaxine. Both drugs were able to counteract the glucocorticoid-induced depression in the tail suspension test. Accordingly, Wrobel et al. (2014) have showed that the antidepressants imipramine, amitriptyline, tianeptine, mianserin, citalopram, and moclobemide were able to block the effects of a single dexamethasone administration in male mice in the forced swimming test. Altogether these data reinforce the view that antidepressants with distinct mechanisms of actions can minimize the depressogenic-like effects of acute dexamethasone administration. It is noteworthy to mention that nortriptyline and venlafaxine were able to reduce spontaneous locomotion in a sex-dependent manner, being male more affected than female mice. The mechanism related to this effect remains unknown calling for more research.

We also aimed to extend the face validity of this acute animal model of depression by investigating the effects of the single administration of dexamethasone in the splash test. This assay assesses motivational and self-care behaviors of rodents, which is generally reported to be affected by stressful situations (Czéh et al., 2016). In this study, we observed that 4 h after the administration of dexamethasone, mice consistently displayed an increase in the latency to self-licking. Moreover, acute administration of nortriptyline and venlafaxine significantly counteracted the latency to the first grooming in the splash test. It is known that chronic stressful situations (which induce depressive symptoms in rodents)
Figure 5. Effects of nortriptyline (30 mg/kg, ip) on the latency to the first self-grooming and the total time spent to self-care in the splash test in male (A) and female (B) acute dexamethasone (0.07 mg/kg, sc, 4 h prior to the test)-treated mice. Data are the mean ± SEM of seven to eight mice/group. *p < .05 versus saline, *p < .05 versus vehicle. Two-way ANOVA, Bonferroni test.

suppress self-grooming in rodents (Ducottet, Aubert, & Belzung, 2004; Ducottet & Belzung, 2004; 2005). Additionally, rats showing longer spray-induced grooming under nonstressful conditions spend shorter immobility time in the forced swimming test (Shiota, Narikiyo, Masuda, & Aou, 2016), correlating the outcomes of the splash test to a depressive related behavior. As far as we know, this is first report of the impact of acute administration of dexamethasone on the mouse behavior assessed in the splash test and the effects of antidepressants in restoring dexamethasone-induced behavioral alterations in this test.

The neural mechanisms related to dexamethasone induced depressive-like behaviors are possibly based on the rapid neurochemical changes on monoamines in brain areas involved in the emotions. Previous studies have shown that rats acute treated with dexamethasone (a 10-fold higher dose as used in the present study, 0.7 mg/kg) presented a 5-HT-level decrease in the prefrontal cortex and hippocampus after 3 h of a single administration without altering dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid levels in the prefrontal cortex, striatum, amygdala, and hippocampus (Inoue & Koyama, 1996). Tsubota et al. (1999) also showed that higher doses of dexamethasone (2 mg/kg × two administrations) suppressed 5-HT turnover in the cerebral cortex and striatum, whereas dopamine turnover was enhanced in the striatum. Altogether these reports support the view that acute dexamethasone reduces monoamines, mainly 5-HT in the brain, which could contribute to the depressogenic effects observed after a single administration of this glucocorticoid. In this sense, acute administration of antidepressants, such as venlafaxine and nortriptyline, were able to block these altered behaviors by restoring the monoamines levels. Thus, other mechanisms have been proposed to elucidate the depressive actions of dexamethasone, particularly after long-term exposure to this drug. For instance, GR activation by dexamethasone impairs nerve growth factor–promoted neurite outgrowth and neuronal survival by interfering with the activation/phosphorylation of protein kinase B and extracellularly regulated kinase 1/2 (Terada et al., 2014). However, further studies are required to fully clarify whether these proposed pathways are also relevant to the acute effects of dexamethasone.
ACUTE NEUROENDOCRINE MODEL OF DEPRESSION IN MICE

Conclusion

The present study adds new evidence to an acute neuroendocrine animal model of depression based on a single administration of dexamethasone in mice. In fact, glucocorticoid administration increased immobility in the tail suspension test and reduced self-care behavior in male and female mice. The administration of antidepressants venlafaxine and nortriptyline were able to block the depressive behaviors of dexamethasone in mice. These observations contribute to the development of a fast-inducing and feasible animal model of depression, which could be able to be performed in both sexes, displaying comparable face, construct, and predictive validity as the stress-induced animal models of depression.

References

Received August 4, 2018
Revision received December 22, 2018
Accepted January 2, 2019
Figure 1S - Percentage of female mice detected for each phase of the estrous cycle treated with vehicle or dexamethasone (0.7 mg/kg, s.c.) immediately after being exposed to the tail suspension and open field tests at 4 h, 24 h or 7 days of intervals after administration.
Figure 2S - Percentage of female mice detected for each phase of the estrous cycle pretreated with vehicle or dexamethasone (0.7 mg/kg, s.c, 4 h prior the test) and subsequently treated with vehicle or Nortriptyline (30 mg/kg, i.p., 1 h prior the test) immediately after being exposed to the tail suspension test and open field tests.

Figure 3S - Percentage of female mice detected for each phase of the estrous cycle pretreated with vehicle or dexamethasone (0.7 mg/kg, s.c, 4 h prior the test) and subsequently treated with vehicle or venlafaxine (30 mg/kg, i.p., 1 h prior the test) immediately after being exposed to the tail suspension test and open field tests.

Figure 4S - Percentage of female mice detected for each phase of the estrous cycle pretreated with vehicle or dexamethasone (0.7 mg/kg, s.c., 4 h prior the test) and subsequently treated with vehicle or venlafaxine (30 mg/kg, i.p., 1 h prior the test) immediately after being exposed to the Splash Test.
Experimental and Clinical Psychopharmacology®

Editor: William W. Stoops

ISSN: 1064-1297
eISSN: 1936-2293

Published: bimonthly, beginning in February

Impact Factor: 2.354

Psychology - Clinical: 48 of 127

5-Year Impact Factor: 2.741

Experimental and Clinical Psychopharmacology® publishes five types of manuscripts:

• original research reports (no word limit, but should typically range between 4,000 and 8,000 words, excluding references)
• brief communications (no more than 3,000 words, excluding references; no more than 2 total figures or tables)
• case reports (no more than 2,000 words, excluding references; only 1 figure or table)
• full reviews of the literature (no word limit)
• brief reviews of the literature (no more than 5,000 words, excluding references)

Experimental and Clinical Psychopharmacology does not accept comments, commentaries, or letters to the Editor.

In recognition of the reality that institutional spam filters may capture files from the APA and the Journals Back Office, please take the following steps to facilitate communication with our editorial office:

• Provide an alternative email address which we can use to contact you in the event of technical difficulties with email communication using your primary address
• Add “apa.org” to your list of “safe” addresses and consider asking your IT administrators to add it to their “white list”
• Contact Peer Review Coordinator Lorie Van Olst if you do not receive confirmation of your submission within three business days or an editorial decision letter within three months

Experimental and Clinical Psychopharmacology is now using a software system to screen submitted content for similarity with other published content. The system compares the initial version of each submitted manuscript against a database of 40+ million scholarly documents, as well as content appearing on the open web. This allows APA to check submissions for potential overlap with material previously published in scholarly journals (e.g., lifted or republished material).
Cover Letter

To help with the review process, authors should provide up to five scientists who are qualified to review their manuscript without bias or conflict of interest. Please provide prospective reviewers' names, affiliations, academic rank, email address, complete mailing address, and phone number in the cover letter. Submissions lacking reviewer recommendations will be returned to the author as incomplete.

Title Page

Include the corresponding author's email and mailing addresses; phone and fax numbers; and the names, degrees, and affiliations of all authors, as well as the number of figures and tables in the manuscript.

Abstract and Keywords

All manuscripts must include an abstract containing a maximum of 250 words typed on a separate page. After the abstract, please supply up to five keywords or brief phrases.

Public Significance Statements

Authors submitting manuscripts to the journal *Experimental and Clinical Psychopharmacology* are now required to provide 2–3 brief sentences regarding the relevance or public health significance of their study or review described in their manuscript. This description should be included within the manuscript on the abstract/keywords page. The public significance statement (similar to the Relevance section of NIH grant submissions) summarizes the significance of the study’s findings for a public audience in one to three sentences (approximately 30-70 words long). It should be written in language that is easily understood by both professionals and members of the lay public. This statement supports efforts to increase dissemination and usage of research findings by larger and more diverse audiences.

When an accepted paper is published, these sentences will be boxed beneath the abstract for easy accessibility. All such descriptions will also be published as part of the Table of Contents, as well as on the journal’s web page. This new policy is in keeping with efforts to increase dissemination and usage by larger and diverse audiences.

Guidelines for Writing a Public Significance Statement

When writing the public significance statement, consider the following recommendations:

- Answer the following questions: What did the study find? Why are these findings important to the audience you are trying to reach (e.g., practitioners, policy makers, news media, or other parties)?
- Write the statement in language that is easily understood by people outside of your field. Avoid jargon or overly technical language. Avoid using acronyms in the statement, and if you do use them, define them.
- Ensure that the statement adequately represents the study's implications if read separately, without the abstract. For example, specifically refer to “patients with depression” rather than “these patients” or “behavioral interventions for bullying” rather than “these interventions.”

Below are several public significance statements that appeared in the *Journal of Consulting and Clinical Psychology*, the first APA journal to require public significance statements as a complement to the abstract. These examples are meant to aid you, the author, in writing your own statements; however, keep in mind that you may make different choices depending on factors such as the topic of the study, specific secondary audiences of the journal, and personal preferences and writing style.

Example 1: “This study strongly suggests that (description of a given psychosocial treatment) is an effective treatment for anxiety, but only if it is of mild to moderate severity. For persons with severe anxiety, additional treatments may be necessary.”

Example 2: “Defining and Characterizing Differences in College Alcohol Intervention Efficacy: A Growth Mixture Modeling Application,” by Henson, Pearson, and Carey (2015) http://dx.doi.org/10.1037/a0038897 This study suggests that there are distinct subgroups of college students defined by how they respond to alcohol intervention and that interventions need to target freshmen men and those who play drinking games. Although most students initially respond to interventions, most also show decay over the next 12 months, which suggests that we need to determine ways of improving the long-term effects of alcohol interventions.

Disclosures and Acknowledgments

Authors are now required to provide a Disclosures and Acknowledgements section. This section should be included on a separate page after the Abstract, as separate paragraphs for each of the points (do not number or provide headers). This section will be automatically incorporated into the online submission system and if the paper is accepted, will appear in the published journal article.
First, authors should state all sources of financial support for the conduct of the research (e.g., This research was supported by NIDA grant X). If the funding source was involved in any other aspects of the research (e.g., study design, analysis, interpretation, writing), then clearly state the role. If the funding source had no other involvement other than financial support, then simply state that the funding source had no other role other than financial support.

Second, a contributors statement should be included indicating that all authors contributed in a significant way to the manuscript and that all authors have read and approved the final manuscript.

Third, all authors are expected to provide a conflict of interest statement disclosing any real or potential conflict(s) of interest, including financial, personal, or other relationships with other organizations or pharmaceutical/biomedical companies that may inappropriately impact or influence the research and interpretation of the findings. If there are no conflicts of interest, this should be clearly stated.

Fourth, authors are encouraged to acknowledge the assistance or contribution of others in the endeavors of the research.

Fifth, authors who have posted their manuscripts to preprint archives prior to submission should include a link to the preprint.

Review Policy
Authors may suggest up to five scientists who are qualified to review their manuscript without bias or conflict of interest. Send prospective reviewers’ names, affiliations, academic rank, email address, complete mailing address, and phone number in your cover letter.

Manuscript Preparation
Prepare manuscripts according to the Publication Manual of the American Psychological Association (6th edition). Manuscripts may be copyedited for bias-free language (see Chapter 3 of the Publication Manual). Review APA’s Journal Manuscript Preparation Guidelines before submitting your article. If your manuscript was mask reviewed, please ensure that the final version for production includes a byline and full author note for typesetting.

Double-space all copy. Other formatting instructions, as well as instructions on preparing tables, figures, references, metrics, and abstracts, appear in the Manual. Additional guidance on APA Style is available on the APA Style website.

Below are additional instructions regarding the preparation of display equations, computer code, and tables.

Display Equations
We strongly encourage you to use MathType (third-party software) or Equation Editor 3.0 (built into pre-2007 versions of Word) to construct your equations, rather than the equation support that is built into Word 2007 and Word 2010. Equations composed with the built-in Word 2007/Word 2010 equation support are converted to low-resolution graphics when they enter the production process and must be rekeyed by the typesetter, which may introduce errors.

To construct your equations with MathType or Equation Editor 3.0:

- Go to the Text section of the Insert tab and select Object.
- Select MathType or Equation Editor 3.0 in the drop-down menu.

If you have an equation that has already been produced using Microsoft Word 2007 or 2010 and you have access to the full version of MathType 6.5 or later, you can convert this equation to MathType by clicking on MathType Insert Equation. Copy the equation from Microsoft Word and paste it into the MathType box. Verify that your equation is correct, click File, and then click Update. Your equation has now been inserted into your Word file as a MathType Equation.

Use Equation Editor 3.0 or MathType only for equations or for formulas that cannot be produced as Word text using the Times or Symbol font.

Computer Code
Because altering computer code in any way (e.g., indents, line spacing, line breaks, page breaks) during the typesetting process could alter its meaning, we treat computer code differently from the rest of your article in our production process. To that end, we request separate files for computer code.

In Online Supplemental Material
We request that runnable source code be included as supplemental material to the article. For more information, visit Supplementing Your Article With Online Material.

In the Text of the Article
If you would like to include code in the text of your published manuscript, please submit a separate file with your code exactly as you want it to appear, using Courier New font with a type size of 8 points. We will make an image of each segment of code in your article that exceeds 40 characters in length. (Shorter snippets of code that appear in text will be typeset in Courier New and run in with the rest of the text.) If an appendix contains a mix of code and
explanatory text, please submit a file that contains the entire appendix, with the code keyed in 8-point Courier New.

Tables
Use Word’s Insert Table function when you create tables. Using spaces or tabs in your table will create problems when the table is typeset and may result in errors.

Academic Writing and English Language Editing Services
Authors who feel that their manuscript may benefit from additional academic writing or language editing support prior to submission are encouraged to seek out such services at their host institutions, engage with colleagues and subject matter experts, and/or consider several vendors that offer discounts to APA authors. Please note that APA does not endorse or take responsibility for the service providers listed. It is strictly a referral service. Use of such service is not mandatory for publication in an APA journal. Use of one or more of these services does not guarantee selection for peer review, manuscript acceptance, or preference for publication in any APA journal.

Submitting Supplemental Materials
APA can place supplemental materials online, available via the published article in the PsycARTICLES® database. Please see Supplementing Your Article With Online Material for more details.

References
List references in alphabetical order. Each listed reference should be cited in text, and each text citation should be listed in the References section.
Examples of basic reference formats:

- **Journal Article:**

- **Authored Book:**

- **Chapter in an Edited Book:**

Figures
Graphics files are welcome if supplied as Tiff or EPS files. Multipanel figures (i.e., figures with parts labeled a, b, c, d, etc.) should be assembled into one file. The minimum line weight for line art is 0.5 point for optimal printing. For more information about acceptable resolutions, fonts, sizing, and other figure issues, please see the general guidelines.
When possible, please place symbol legends below the figure instead of to the side. APA offers authors the option to publish their figures online in color without the costs associated with print publication of color figures. The same caption will appear on both the online (color) and print (black and white) versions. To ensure that the figure can be understood in both formats, authors should add alternative wording (e.g., “the red (dark gray) bars represent”) as needed.
For authors who prefer their figures to be published in color both in print and online, original color figures can be printed in color at the editor’s and publisher’s discretion provided the author agrees to pay:
- $900 for one figure
- An additional $600 for the second figure
- An additional $450 for each subsequent figure

Permissions
Authors of accepted papers must obtain and provide to the editor on final acceptance all necessary permissions to reproduce in print and electronic form any copyrighted work, including test materials (or portions thereof), photographs, and other graphic images (including those used as stimuli in experiments). On advice of counsel, APA may decline to publish any image whose copyright status is unknown. Download Permissions Alert Form (PDF, 13KB)
Publication Policies

APA policy prohibits an author from submitting the same manuscript for concurrent consideration by two or more publications. See also APA Journals® Internet Posting Guidelines. APA requires authors to reveal any possible conflict of interest in the conduct and reporting of research (e.g., financial interests in a test or procedure, funding by pharmaceutical companies for drug research). Download Disclosure of Interests Form (PDF, 38KB).

In light of changing patterns of scientific knowledge dissemination, APA requires authors to provide information on prior dissemination of the data and narrative interpretations of the data/research appearing in the manuscript (e.g., if some or all were presented at a conference or meeting, posted on a listserv, shared on a website, including academic social networks like ResearchGate, etc.). This information (2–4 sentences) must be provided as part of the Author Note. Posting of a manuscript to a preprint archive (like PsyArXiv) prior to submission is permitted for authors submitting manuscripts to Experimental and Clinical Psychopharmacology; preprints should be disclosed in the cover letter, and links should be included in the Disclosures and Acknowledgments section.

Authors of accepted manuscripts are required to transfer the copyright to APA. For manuscripts not funded by the Wellcome Trust or the Research Councils UK Publication Rights (Copyright Transfer) Form (PDF, 83KB). For manuscripts funded by the Wellcome Trust or the Research Councils UK Wellcome Trust or Research Councils UK Publication Rights Form (PDF, 34KB).

Ethical Principles

It is a violation of APA Ethical Principles to publish "as original data, data that have been previously published" (Standard 8.13). In addition, APA Ethical Principles specify that "after research results are published, psychologists do not withhold the data on which their conclusions are based from other competent professionals who seek to verify the substantive claims through reanalysis and who intend to use such data only for that purpose, provided that the confidentiality of the participants can be protected and unless legal rights concerning proprietary data preclude their release" (Standard 8.14).

APA expects authors to adhere to these standards. Specifically, APA expects authors to have their data available throughout the editorial review process and for at least 5 years after the date of publication. Authors are required to state in writing that they have complied with APA ethical standards in the treatment of their sample, human or animal, or to describe the details of treatment. Download Certification of Compliance With APA Ethical Principles Form (PDF, 26KB). The APA Ethics Office provides the full Ethical Principles of Psychologists and Code of Conduct electronically on its website in HTML, PDF, and Word format. You may also request a copy by emailing or calling the APA Ethics Office (202-336-5930). You may also read "Ethical Principles," December 1992, American Psychologist, Vol. 47, pp. 1597–1611.

Other Information

Visit the Journals Publishing Resource Center for more resources for writing, reviewing, and editing articles for publishing in APA journals.